
Application Note of NUVOTON 32-bit NuMicro® Family

AN_1016_EN March 11, 2010

 - i - Rev. 1.00

Application NoteApplication Note

32-bit Cortex™-M0 MCU
NuMicro® Family

How to use PDMA to transfer data in NUC1xx?

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 1 - Rev. 1.00

Table of Contents-

1 INTRODUCTION... 2
1.1 Scope.. 2

1.2 Basic acknowledge ... 2

1.3 Features.. 2

1.4 Limitation... 2

2 CODE SECTION... 3
2.1 Globals and Macros.. 3

2.2 Main Function (in Smpl_DrvPDMA.c) ... 3

2.3 The PDMA transfer flow (in Smpl_DrvPDMA.c) ... 4
2.3.1 Transfer flow in process ..4
2.3.2 Transfer flow in interrupt handler ..5

3 CALLING SEQUENCE.. 6
3.1 Run in process.. 6

3.2 Run in interrupt handler .. 7

3.3 API Usage Reference ... 7

4 EXECUTION ENVIRONMENT SETUP AND RESULT .. 8
4.1 Test Smpl_DrvPDMA.. 8

4.2 Result.. 8

REVISION HISTORY .. 9

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 2 - Rev. 1.00

1 INTRODUCTION
This document explains the sample code, “Smpl_DrvPDMA” which is included in the
AN_1016_EN.ZIP file and demonstrates how to transfer data between RAM and UART
receive/transmit register by PDMA.

1.1 Scope
This article is provided for programmers applying PDMA into applications to improve the performance
of system.

1.2 Basic acknowledge
• What is NUC1xx’s PDMA?

NUC1xx’s PDMA is the peripheral direct memory access controller that transfers data to and from
memory or transfer data to and from APB(Advanced Peripheral Bus). It has nice channels of DMA
associated with Peripheral-to-Memory, Memory-to-Peripheral or Memory-to-Memory.

1.3 Features
• Illustrates how to transfer data from memory to peripheral device.

• Illustrates how to transfer data from peripheral device to memory.

• Interrupt triggered after transfer is finished.

1.4 Limitation
• Only illustrates transfer data between memory and peripheral device with 8 bits width data. (It’s

easily to change parameters to transfer between memory and memory, or changed to other data
width).

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 3 - Rev. 1.00

2 CODE SECTION

2.1 Globals and Macros
Global SrcArray is defined to fill the pre-defined data that will transfer to UART Transmit Holding
Register (UA_THR).

Global DestArray is defined to receive data from UART Receive Buffer Register (UA_RBR).

IntCnt will record the PDMA transfer count.

IsTestOver is the flag set by PDMA interrupt after all data transfer is finished.

#define UART_TEST_LENGTH 64

uint8_t SrcArray[UART_TEST_LENGTH];

uint8_t DestArray[UART_TEST_LENGTH];

int32_t IntCnt;

volatile int32_t IsTestOver;

2.2 Main Function (in Smpl_DrvPDMA.c)
(Please skip this section if you just want to know the flow of PDMA transfer)

The main function sets the system clock’s frequency by assign value to “SystemFrequecy”, and then
opens two UART port by function “DrvUART_Open()”, and finally it call PDMA_UART() to begin PDMA
flow.

In the flowing code, 1st UART port (UART_PORT0) will be used to output/input messages in console,
2nd UART port (UART_PORT1) will be used to demonstrate the PDMA transfer between memory and
peripheral device.

Code for open two UART:

/* Set UART Pin */

DrvGPIO_InitFunction(FUNC_UART0);

DrvGPIO_InitFunction(FUNC_UART1);

/* UART Setting */

sParam.u32BaudRate = 115200;

sParam.u8cDataBits = DRVUART_DATABITS_8;

sParam.u8cStopBits = DRVUART_STOPBITS_1;

sParam.u8cParity = DRVUART_PARITY_NONE;

sParam.u8cRxTriggerLevel = DRVUART_FIFO_1BYTES;

/* Set UART Configuration */

DrvUART_Open(UART_PORT0,&sParam);

DrvUART_Open(UART_PORT1,&sParam);

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 4 - Rev. 1.00

2.3 The PDMA transfer flow (in Smpl_DrvPDMA.c)

2.3.1 Transfer flow in process
Function PDMA_UART() demonstrates the whole procedure of PDMA transfer.

Before transfer start, it prepared the transfer data and initialize PDMA module firstly.

1. Calls BuildSrcPattern() to fill the source data in global SrcArray;

2. Calls DrvPDMA_Init() to initialize the PDMA module;

3. Calls DrvPDMA_SetCHForAPBDevice() with parameter eDRVPDMA_UART1 and
eDRVPDMA_UART0, so as to associate PDMA with device UART1/UART0.

BuildSrcPattern((uint32_t)SrcArray,UART_TEST_LENGTH);

UARTPort = UART1_BASE;

i=UART_TEST_LENGTH;

ClearBuf((uint32_t)DestArray, UART_TEST_LENGTH,0xFF);

/* PDMA Init */

DrvPDMA_Init();

/* PDMA Setting */

DrvPDMA_SetCHForAPBDevice(eDRVPDMA_CHANNEL_1,eDRVPDMA_UART1,eDRVPDMA_W
RITE_APB);

DrvPDMA_SetCHForAPBDevice(eDRVPDMA_CHANNEL_0,eDRVPDMA_UART1,eDRVPDMA_R
EAD_APB);

After the initialization above finished, it sets the two transfer channels for write and read data
respectively, the transfer address and data width also specified in this step.

(Please note that the UART1 transmit and receive register has the same address, which is defined as
UARTPort here.)

/* CH1 TX Setting */

sPDMA.sSrcAddr.u32Addr = (uint32_t)SrcArray;

sPDMA.sDestAddr.u32Addr = UARTPort;

sPDMA.u8TransWidth = eDRVPDMA_WIDTH_8BITS;

sPDMA.u8Mode = eDRVPDMA_MODE_MEM2APB;

sPDMA.sSrcAddr.eAddrDirection = eDRVPDMA_DIRECTION_INCREMENTED;

sPDMA.sDestAddr.eAddrDirection = eDRVPDMA_DIRECTION_FIXED;

sPDMA.i32ByteCnt = UART_TEST_LENGTH;

DrvPDMA_Open(eDRVPDMA_CHANNEL_1,&sPDMA);

/* CH0 RX Setting */

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 5 - Rev. 1.00

sPDMA.sSrcAddr.u32Addr = UARTPort;

sPDMA.sDestAddr.u32Addr = (uint32_t)DestArray;

sPDMA.u8Mode = eDRVPDMA_MODE_APB2MEM;

sPDMA.sSrcAddr.eAddrDirection = eDRVPDMA_DIRECTION_FIXED;

sPDMA.sDestAddr.eAddrDirection = eDRVPDMA_DIRECTION_INCREMENTED;

DrvPDMA_Open(eDRVPDMA_CHANNEL_0,&sPDMA);

And then install the interrupt handler for PDMA transfer.

/* Enable INT */

DrvPDMA_EnableInt(eDRVPDMA_CHANNEL_0, eDRVPDMA_BLKD);

DrvPDMA_EnableInt(eDRVPDMA_CHANNEL_1, eDRVPDMA_BLKD);

/* Install Callback function */

DrvPDMA_InstallCallBack(eDRVPDMA_CHANNEL_0,eDRVPDMA_BLKD,
(PFN_DRVPDMA_CALLBACK) PDMA0_Callback);

Now start the transfer here. For UART device, it is required to enable PDMA mode by
DrvUART_SetPDMA(). For Memory-to-Memory PDMA, do not call DrvUART_SetPDMA().

/* Enable UART PDMA and Trigger PDMA specified Channel */

DrvUART_SetPDMA(UART_PORT1,ENABLE);

DrvPDMA_CHEnablelTransfer(eDRVPDMA_CHANNEL_0);

DrvPDMA_CHEnablelTransfer(eDRVPDMA_CHANNEL_1);

After PDMA transfer is finished, interrupt handler function PDMA0_Callback() will be called to set flag.
PDMA_UART() check this flag and then returns.

2.3.2 Transfer flow in interrupt handler
The interrupt handler PDMA0_Callback() will be triggered after one transfer on PDMA channel0 is
finished. As the code below, it enables the PDMA transfer again. After triggered for 10 times, it sets
the flag IsTestOver to TRUE to indicate the process that all transfer is over.

extern int32_t IntCnt;

printf("\tTransfer Done %02d!\r",++IntCnt);

if(IntCnt<10)

{

 DrvPDMA_CHEnablelTransfer(eDRVPDMA_CHANNEL_1);

 DrvPDMA_CHEnablelTransfer(eDRVPDMA_CHANNEL_0);

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 6 - Rev. 1.00

}

else

{

 IsTestOver = TRUE;

}

3 CALLING SEQUENCE

3.1 Run in process

Init Clock

Open UART0

Set PDMA
channel 0

Open UART1

Prepare data

Init PDMA driver

Set PDMA
channel 1

Enable UART’s
PDMA function

Install interrupt
handler

Close
PDMA driver

Trigger PDMA
channel 1

Trigger PDMA
channel 0

Check
IsTestOver

Yes

No

Figure 3-1 Control Flow of Running in Process

1. Initialize Clock Control settings (PLLCON and CLKSEL0 registers)

2. Open UART device for UART0 and UART1

3. Prepare transfer source data.

4. Initialize PDMA driver.

5. Set PDMA channel 1 for memory to UART1

6. Set PDMA channel 0 for UART1 to memory

7. Enable and install PDMA interrupt for PDMA channel 0.

8. Enable UART’s PDMA function

9. Trigger PDMA channel 1 to start transfer data to UART1.

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 7 - Rev. 1.00

10. Trigger PDMA channel 0 to start receiving data from UART1

11. Wait interrupt for setting the flag IsTestOver.

12. Close PDMA driver.

3.2 Run in interrupt handler

Close
PDMA driver

IntCnt<10

Yes

Trigger PDMA
channel 1

Trigger PDMA
channel 0

No

Figure 3-2 Control Flow of Running in Interrupt Handler

1. If the transfer count is smaller than 10

a) Trigger PDMA channel 1 to start transfer data to UART1.

b) Trigger PDMA channel 0 to start receiving data from UART1

c) Increase the transfer count variable(IntCnt).

2. Otherwise (If the transfer count is 10)

a) Set flag IsTestOver to TRUE.

3.3 API Usage Reference
• NUC1xx Driver Reference Guide.doc

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 8 - Rev. 1.00

4 EXECUTION ENVIRONMENT SETUP AND RESULT

4.1 Test Smpl_DrvPDMA
The PDMA sample code, Smpl_DrvPDMA, could be built by Keil MDK tool and download to NUC1xx
series DEV Board through ICE. Then user is able to execute the code in ICE environment or reset the
DEV board to execute the code which had been programmed in on-chip Program Flash to verify the
Smpl_DrvPDMA code.

4.2 Result
When running, the source data(SrcArray) will be transferred to UART1 Transmit Holding Register, and
data in UART1 Receive Buffer Register will be transferred to the destination buffer (DestArray), so that
the data will be copied from SrcArray to DestArray in this way. User can check the data in DestArray
after transfer finished to verify the PDMA result.

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 9 - Rev. 1.00

REVISION HISTORY
REV. DATE DESCRIPTION
0.01 March 11, 2010 1. Initially issued.

How to use PDMA to transfer data in NUC1xx?

Application Note

AN_1016_EN March 11, 2010

 - 10 - Rev. 1.00

Important Notice
Nuvoton products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Nuvoton products are not intended for applications wherein failure
of Nuvoton products could result or lead to a situation wherein personal injury, death or severe
property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper
use or sales.

Please note that all data and specifications are subject to change without notice. All the
trademarks of products and companies mentioned in this datasheet belong to their respective
owners.

	1 INTRODUCTION
	1.1 Scope
	1.2 Basic acknowledge
	1.3 Features
	1.4 Limitation

	2 CODE SECTION
	2.1 Globals and Macros
	2.2 Main Function (in Smpl_DrvPDMA.c)
	2.3 The PDMA transfer flow (in Smpl_DrvPDMA.c)
	2.3.1 Transfer flow in process
	2.3.2 Transfer flow in interrupt handler

	3 CALLING SEQUENCE
	3.1 Run in process
	3.2 Run in interrupt handler
	3.3 API Usage Reference

	4 EXECUTION ENVIRONMENT SETUP AND RESULT
	4.1 Test Smpl_DrvPDMA
	4.2 Result

	REVISION HISTORY

