
Application Note of NUVOTON 32-bit NuMicro® Family

AN_1020_EN February 25, 2010

 - i - Rev. 1.00

Application NoteApplication Note

32-bit Cortex™-M0 MCU
NuMicro® Family

USB MassStorage Application Node & Sample Code

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 1 - Rev. 1.00

Table of Contents-

1 INTRODUCTION... 2
1.1 Scope.. 2

1.2 Features.. 2

2 CODE SECTION... 3
2.1 Main Function (in Smpl_UDC.c) ... 3

2.2 The polling flow (in MassStorage.c).. 3

2.3 How to apply new storage type... 5

3 CALLING SEQUENCE.. 6
3.1 Run as an USB Device ... 6

3.2 Customize a storage Device... 7

3.3 API Usage Reference ... 7

4 EXECUTION ENVIRONMENT SETUP AND RESULT .. 8
4.1 Test Smpl_UDC.. 8

4.2 Result.. 8

REVISION HISTORY .. 9

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 2 - Rev. 1.00

1 INTRODUCTION
This document explains the sample code, “Smpl_UDC” which is included in the AN_1020_EN.ZIP file
and demonstrates how to create an USB MassStorage device through the related libraries.

1.1 Scope
This article is provided for programmers applying the USB IP to USB applications. It is assumed that
the reader is familiar with the Universal Serial Bus (USB) Specification 1.1 and the Device Class
Definition for MassStorage.

1.2 Features
• Support customization of VID (Vendor ID) / PID (Product ID).

• Support customization the storage device.

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 3 - Rev. 1.00

2 CODE SECTION

2.1 Main Function (in Smpl_UDC.c)
Refer chapter of Calling Sequence for its calling sequence.

In the main function, the PLL clock should be set to 48MHz for USB PHY clock.

After the hardware initialization and clock setting is finished, udcInit() will be called to reset and
initialize USB endpoints state. It will check and set g_u8UsbState according to the USB connection
status.

After USB initialization, udcFlashInit() will be called to initialize the storage device. User can add the
customized initialization code for their new storage type.

The last step is to call udcMassBulk(), which is the polling loop internally and will check and response
the various events about USB.

int32_t main(void)

{

 ...

/* Initialize USB Device function */

udcInit();

/* Initialize mass storage device */

udcFlashInit();

/* Start USB Mass Storage */

udcMassBulk();

return 0;

}

2.2 The polling flow (in MassStorage.c)
As you see, function udcMassBuld() is only a loop that polling USB by function UsbIsr(). UsbIsr() is not
a real interrupt handler, and it’s just called in main process to demonstrate the USB function simply
and easily. (In more complex application, the similar procedure like UsbIsr() can be moved into USB
interrupt handler.)

void udcMassBulk(void)

{

 /* Handler the USB ISR by polling */

 while(1)

 {

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 4 - Rev. 1.00

 UsbIsr();

 }

}

void UsbIsr(void)

{

 uint32_t u32EVF = _DRVUSB_GET_EVF();

 if (u32EVF & EVF_FLD)

 {

 /* Handle the USB attached/detached event */

 UsbFdt();

 }

 else if(u32EVF & EVF_BUS)

 {

 /* Handle the USB bus event: Reset, Suspend, and Resume */

 UsbBus();

 }

 else if(u32EVF & EVF_USB)

 {

 /* Handle the USB Protocol/Clase event */

 UsbUsb(u32EVF);

 }

}

As the code above, UsbIsr() checks the USB event flag, including attach/detach event, USB bus event
and USB protocol/class event, and calls the corresponding response function if any event flag was set.

In all of the response functions, the most two important functions are UsbBulkOutAck and
UsbBulkInAck called by UsbUsb(), which complete most of the communication works to the USB host.
UsbBulkOutAck/UsbBulkInAck implements the SCSI command needed by a MassStorage device,
which is represented as struct CBW::u8OPCode in the sample code.

(Further more, user can try to check “u8OPCode” and support customized SCSI command on this
USB device. For windows users, please seek keywords DeviceIOControl and
SCSI_IOCTL_DATA_OUT about how send the customized SCSI command by a Windows program.)

Other two functions SpiRead and SpiWrite, called by the response functions, provided for user to
customize the storage I/O operation. User can rewrite SpiRead/SpiWrite to support new storage
device. The prototype functions are:

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 5 - Rev. 1.00

void SpiRead(uint32_t addr, uint32_t size, uint32_t buffer)

{

 /* This is low level read function of USB Mass Storage */

}

void SpiWrite(uint32_t addr, uint32_t size, uint32_t buffer)

{

 /* This is low level write function of USB Mass Storage */

}

2.3 How to apply new storage type
To apply new storage type, user needs to rewrite the 3 functions:

• uint8_t udcFlashInit(void)

 Initialize the storage device

• void SpiRead(uint32_t addr, uint32_t size, uint32_t buffer)

 Read data from storage device

• void SpiWrite(uint32_t addr, uint32_t size, uint32_t buffer)

 Write data to storage device

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 6 - Rev. 1.00

3 CALLING SEQUENCE

3.1 Run as an USB Device

H/W Init

Set clock

Init MassStroge
functions

Init storage device

Get USB event flag

Set USB state

Set USB state

Handle protocol
or class event

Bus
event

Detach/Attach
event

Protocol/Class
event

Figure 3-1 Control Flow of Running as an USB Device

1. Initialize hardware

2. Set clock for USB.

3. Initialize USB MassStorage functions.

4. Initialize the storage device.

5. Polling USB status

1) Check and handle USB attached/detached event

2) Check and handle USB bus event: Reset, Suspend and Resume

3) Check and handle USB protocol/Class event

6. Go to step 5 to polling USB status again

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 7 - Rev. 1.00

3.2 Customize a storage Device

Customize VID/PID

Rewrite udcFlashInit()

Rewrite SpiRead()

Rewrite SpiWrite()

Figure 3-2 Control Flow of Customize Vendor USB Device as MassStorage

1. Customize VID / PID if needed.

2. Rewrite function udcFlashInit(), SpiRead() and SpiWrite() for customized storage device.

3. Please refer section 2.3 for the description of the 3 functions above.

3.3 API Usage Reference
• USB Driver Reference Guide.doc

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 8 - Rev. 1.00

4 EXECUTION ENVIRONMENT SETUP AND RESULT

4.1 Test Smpl_UDC
The USB MassStorage sample code, Smpl_UDC, could be built by Keil MDK tool and download to
NUC1xx series DEV Board through ICE. Then user is able to execute the code in ICE environment or
reset the DEV board to execute the code which had been programmed in on-chip Program Flash to
verify the Smpl_UDC code.

4.2 Result
When the DEV board executes this sample code, the DEV board performs the behavior as USB disk.
Once the USB port is connected to the PC with Windows OS, there will be new disk volume found in
the windows explorer.

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 9 - Rev. 1.00

REVISION HISTORY
REV. DATE DESCRIPTION
0.01 March 11, 2010 1. Initially issued.

USB MassStorage Application Node & Sample Code

Application Note

AN_1020_EN February 25, 2010

 - 10 - Rev. 1.00

Important Notice
Nuvoton products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Nuvoton products are not intended for applications wherein failure
of Nuvoton products could result or lead to a situation wherein personal injury, death or severe
property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper
use or sales.

Please note that all data and specifications are subject to change without notice. All the
trademarks of products and companies mentioned in this datasheet belong to their respective
owners.

	1 INTRODUCTION
	1.1 Scope
	1.2 Features

	2 CODE SECTION
	2.1 Main Function (in Smpl_UDC.c)
	2.2 The polling flow (in MassStorage.c)
	2.3 How to apply new storage type

	3 CALLING SEQUENCE
	3.1 Run as an USB Device
	3.2 Customize a storage Device
	3.3 API Usage Reference

	4 EXECUTION ENVIRONMENT SETUP AND RESULT
	4.1 Test Smpl_UDC
	4.2 Result

	REVISION HISTORY

