

PSpice A/D 教程六

(ABM 库的设置和应用)

教程内容:

ABM 库简介
ABM 库内各元件设置
ABM 库的应用

ABM 是 Analog Behavioral Modeling 的缩写,表示模拟行为模型,使用模拟行为模型可以依据用户的需要,表示较复杂的数学函数或传递函数等,通过它能产生更加逼真的描述谐波失真、带宽受限等非理想特性。模拟行为模型是受控源的延伸,他们都是用数学运算方式描述的。通过调用数学函数以及查表的方法灵活的描述电子器件,不需要用具体的电子器件设计电路。对于一些原理分析以及电子系统分析中需要用到的功能,特别是对于一些器件的建模,采用 ABM 库的器件会各电路的仿真设计和分析带来极大的方便。

常见的模拟行为模型皆存于 ABM.olb 库中。下面我们分别来对该库中的器件进行依次的介绍。

一、表达式元器件

这些器件是通过定制表达式来实现多种需要的功能。表达式的属性可以通过输入信号标识符核算自得结合定义。可以在表达式语句中使用所有的标准 PSpice 运算符。也可以通过使用表达式属性参量描述网络节点或常量。

表达式元器件包括:

器件名称	含义	符号
ABM	无输入,电压输出	3.14159265 OUT—
ABM1	一输入,电压输出	IN OUT— (V(%IN) * 100)/1000
ABM2	两个输入,电压输出	IN1 OUT IN2 (V(%IN1))V(%IN2)) / 2.0
ABM3	三个输入,电压输出	IN1 IN2 OUT IN3 (V(%IN1) +V(%IN2) +V(%IN3))/3.0
ABM/I	无输入,电流输出	1.4142136 OUT-
ABM1/I	一个输入,电流输出	OUT- OUT- (V(%IN) + 100) / 1000

ABM2/I	两个输入,电流输出	IN1 OUT+
ABM3/I	三个输入,电流输出	IN1 OUT- IN2 IN3 OUT- IV(%IN1) +V(%IN2) +V(%IN3)) / 3.0

这些元器件的设置都是相同的,主要是多符号下方的表达式进行编辑,方法也很简单,只要双击该表达式就可以。比如我们需要设计一个系统来实现同向输入电压求和的运算: vo=2V1+3V2,就可以如图 6-1 所示的电路图来实现,选择 ABM2 器件。

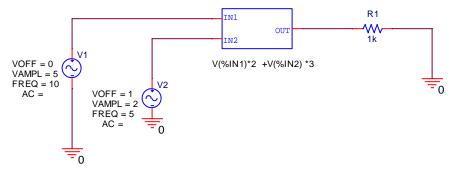
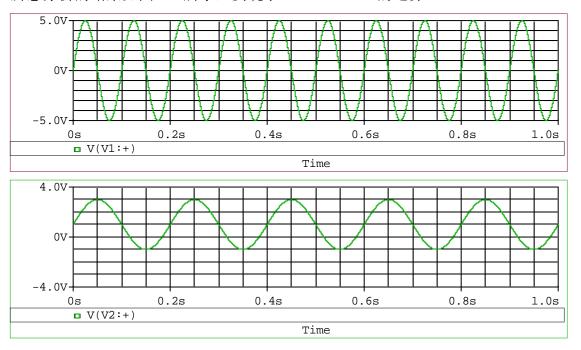



图 6-1 ABM2 的一个例子

瞬态分析的结果如图 6-2 所示,实现了 vo=2V1+3V2 的运算。

上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座 T:021-51696680-8063 F: 021-52370712 邮箱: cadence@comtech.com.cn / qipingwang@comtech.com.cn www.comtech.com.cn

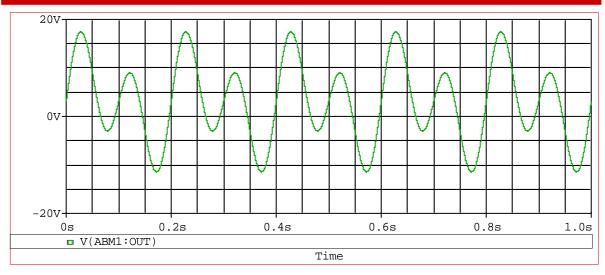


图 6-2 两个输入和一个输出的波形图

二、数学函数元器件

这些器件可以实现输入和输出间的数学函数运算,都是包含一个输入一个输出。 数学函数元器件主要包含:

名称	含义	符号
ABS	取绝对值	ABS OUT
ATAN	实现正切函数运算	ATAN OUT
ACTAN	实现反正切函数运算	ARCTAN IN OUT
COS	实现余弦函数运算	COS IN OUT
EXP	实现指数函数运算	IN OUT
LOG	实现自然对数运算	LOG
LOG10	实现以 10 为底的对数运算	LOG10 IN OUT
PWR	实现输入电压绝对值的Y次方	PWR1.0 IN OUT
PWRS	实现输入电压的 Y 次方	PWRS1.0
SIN	实现正弦函数运算	SIN OUT
SQRT	实现平方根运算	SQRT IN OUT

TAN	实现正切函数运算	IN OUT
INTEG	实现积分运算	1.0 OV
DIFFER	实现微分运算	d/dt IN OUT-IN 1.0

数学函数元器件应用比较简单,因为都是只有一个输入一个输出,除了 PWR 和 PWRS 需要设置多少次方,还有积分和微分需要设置倍数外,其他的元器件都不需要 设置参数,只要选择对元器件就可以了。

比如需要对某一信号进行单向整流,可以如图 6-3 所示的电路来实现。

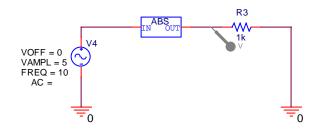


图 6-3 数学函数元器件例子

得到的波形图如图 6-4 所示。

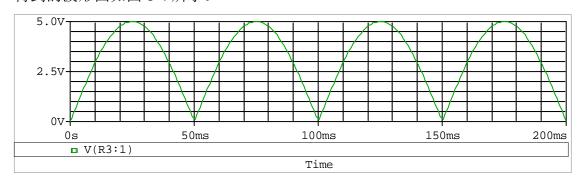


图 6-4 显示的波形

三、基本器件

产生基本函数的器件,在大多数情况下不需要规定属性值。包括以下器件:

名称	含义	符号
CONST	输出常数	1.000 OUT
GAIN	恒定增益,属性增益值乘以输入信	1E3
GAIN	号作为输出结果	3 123

上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座 T:021-51696680-8063 F: 021-52370712 邮箱: cadence@comtech.com.cn / qipingwang@comtech.com.cn www.comtech.com.cn

ESUM	两个电压信号相加,输出电压信号	E1 IN1+ IN1- OUT+ ESUM IN2+ OUT- IN2-
GSUM	两个电压信号相加,输出电流信号	G2 IN1+ IN1- OUT+ GSUM O IN2+ IN2+ IN2-
DIEF	两个信号相减	INT OUT
EMULT	两个信号相乘,输出电压信号	E2 IN1+ IN1- OUT+ EMULT IN2+ OUT- IN2-
GMULT	两个信号相乘,输出电流信号	G3 IN1+ IN1- OUT+ GMULT O IN2+ IN2- IN2-

基本器件的使用也很简单,例如,需要将某一音频信号与载频信号混频后放大 10倍,那么实现的电路如图 6-5 所示。运行后的波形如图 6-6 所示。

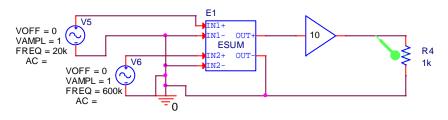


图 6-5 混频实现电路

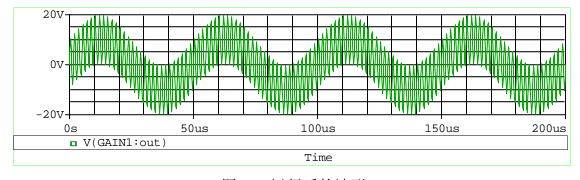


图 6-6 运行后的波形

四、滤波器器件

上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座 T:021-51696680-8063 F: 021-52370712

滤波器器件适用于设计低通、高通、带通、带阻滤波器的。包括的元件有:

名称	含义	符号
LOPASS	Chebyshev 低通滤波器	10Hz 1dB 100Hz 50dB
HIPASS	Chebyshev 高通滤波器	10Hz 1dB 100Hz 50dB
BANDPASS	Chebyshev 带通滤波器	1000Hz 300Hz 100Hz 1dB 50dB
BANDREJ	Chebyshev 带阻滤波器	1000Hz 300Hz 100Hz 1dB 50dB 10Hz

各滤波器的参数设置如下:

低通滤波器:

FS: 禁带频率

FP: 通带频率, 截止频率

RIPPLE: 通带脉动系数 (dB)

STOP 禁带衰减系数 (dB)

高通滤波器:

FS: 禁带频率

FP: 通带频率, 截止频率

RIPPLE: 通带脉动系数(dB)

STOP: 禁带衰减系数 (dB)

带通滤波器:

RIPPLE 通带脉动系数 (dB)

STOP: 禁带衰减系数 (dB)

F0, F1, F2, F3 F0, F1, F2, F3: 截止频率

带阻滤波器:

RIPPLE: 通带脉动系数 (dB)

STOP: 禁带衰减系数 (dB)

F0, F1, F2, F3 F0, F1, F2, F3: 截止频率

例如,我们在图 6-5 的混频器后添加低通滤波器,如图 6-7 所示,

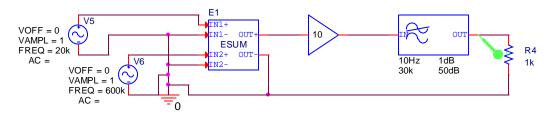


图 6-7 低通滤波器的设置

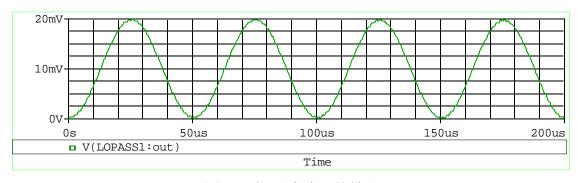


图 6-8 低通滤波器的输出

得到频率为 20kHz 的低通信号。

五、等效器件

从理论上讲,所有的有源器件皆可化成含受控源的等效电路进行分析,受控源分四类:压控电压(E),流控电流(F),压控电流(G)和流控电压(H)。而 ABM中所有的 PSpice 等效器件能都够被划分为 E 型或者 G 型器件。E 型器件是输出电压信号,G型器件是输出电流信号。在前面介绍的几种元件中就已经见过了,如 ESUM,GSUM,EMULT。GMULT。

这里介绍剩下的 E.G 型器件:

器件名称	含义	符号
EVALUE	使用输入方程来表示传输函数	E2 IN+ OUT+ IN- OUT EVALUE V(%IN+, %IN-)
GVALUE		G1 IN+ OUT-
ETABLE	使用自定义表格形式表示时域信号	E3 IN+ OUT+ IN- OUT ETABLE V(%IN+, %IN-)

上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座 T:021-51696680-8063 F: 021-52370712

GTABLE		G2 IN+ OUT- IN- OUT- GTABLE V(%IN+, %IN-)
EFREQ	使用有意义牺牲啦应表表示牺牲信息	E4 IN+ OUT+ IN- OUT EFREQ V(%IN+, %IN-)
GFREQ	使用自定义频域响应表表示频域信号	G3 IN+ OUT- OUT- GFREQ V(%IN+, %IN-)
ELAPLACE	使用拉普拉斯方程表示传输函数	E5 IN+ OUT+ IN- OUT ELAPLACE V(%IN+, %IN-)
GLAPLACE		G4 IN+ OUT- IN- OUT- GLAPLACE V(%IN+, %IN-)

这一节的器件设置相对要麻烦一下,灵活性也要大些,当然实现的功能也多一些。 下面首先介绍一个如图 6-9 所示的使用 VALUE 器件生成一个 PSK 调制器中的振荡器 地例子来说明 VALUE 器件的使用。

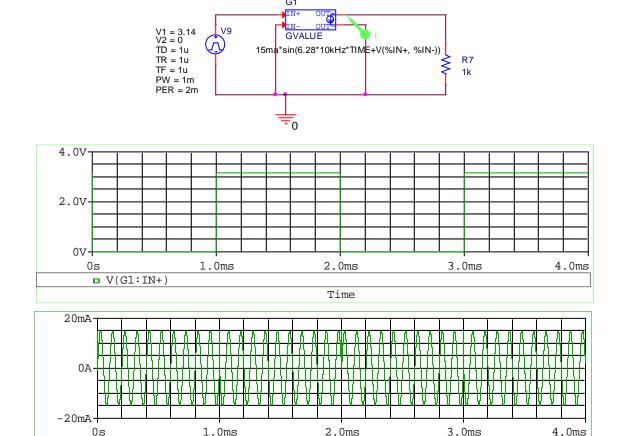


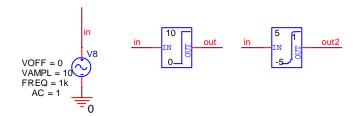
图 6-9 VALUE 器件使用的例子和运行结果

Time

上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座 T:021-51696680-8063 F: 021-52370712 邮箱: <u>cadence@comtech.com.cn</u> / <u>gipingwang@comtech.com.cn</u> www.comtech.com.cn

□ I(G1)

FREQ 的参数比较多,含义见下表:


EXPR	用于查表的值;如果此项为空则缺省为输入 V(%IN+,%IN-)	
TABLE	用一系列的(输入频率、幅度、相位)三元组或者(输入频率、实部、 虚部)三元组来描述一个复数值	
DELAY	群时延增量,如果此项为空时,值为0	
R_I	表的类型;如果此项为空,则频率分配表的格式为(输入函数、幅度、相位);如果用任意值(如 YES)定义该项,表的格式为(输入函数、实部、虚部)	
MAGUNITS	幅度单位,可以为分贝 db 或者原来幅度单位 MAG;此项为空时 缺省单位为 db	
PHASEUNITS	相位单位,可以为度 DEG 或者弧度 RAD,此项为空时默认单位为度 deg	

六、限制性元件

限制性元件是可以将输出值限制在预先设定的范围内。ABM 库中包含如下几种:

器件名称	含义	符号
LIMIT	硬限幅器件。将输出值限制在参数 HI (上限值)和 LO(下限值)内	10 IN BOOK OF THE PROPERTY OF
GLIMIT	增益限幅器件。相当于一个线性运算放大器,参数 HI(上限值)和 LO(下限值)GAIN(增益)。	
SOFTLIM	软限幅器,使用连续的限幅函数进行限幅。参数 HI(上限值)和 LO(下限值)GAIN(增益)。	10 1k IN 0

图 6-10 是限幅器的例子。

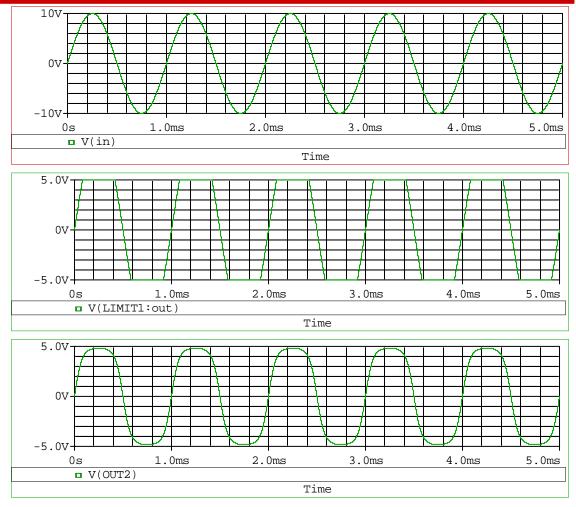


图 6-10 限幅器的实例

结束语:

ABM 库是 PSpice 自带元器件库中比较特殊的一个库,它并不代表实际的元件,而且包含的元件其实也不算多,但是它在一些原理性分析和器件建模上却有着举足轻重的作用,也是 PSpice 优于于其他模拟电路仿真软件的特点之一。因此在一节较为细致的讲解的各器件的含义和设置,对于灵活应用它来实现原理性分析和器件建模,还需要各位不断的熟练和摸索才行。

如果有关于 PSpice 软件安装使用等任何问题可联系:

联系人: 吴少琴

科通数字技术公司

地址:上海市长宁区延安西路 726 号华敏、翰尊时代广场 13 层 H 座

邮编: 200050

电话: 021-51696680 邮箱: shaoqinwuQcomtech.com.cn