
Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 41
UG416 June 22, 2011

MIG Example Design with Traffic Generator (CORE Generator Tool Native Interface Only)

MIG Example Design with Traffic Generator (CORE Generator Tool 
Native Interface Only)

This section explains how to simulate and implement the MIG generated example design. 
This design includes a traffic generator for demonstrating and testing the MCB based 
memory interface. The bitstream created from implementation of the example design can 
be targeted to a Spartan-6 FPGA SP601 or SP605 hardware evaluation board to 
demonstrate DDR2 or DDR3 interfaces, respectively.

The example design includes these modules as shown in Figure 1-38:

• Spartan-6 FPGA MIG Wrapper: top-level wrapper file produced by the MIG tool, 
containing an MCB and other FPGA resources necessary to create the desired memory 
interface.

• TB_top: test bench stimulus module with the Init Memory Control block and the 
Traffic Pattern Generator.

• Clock Infrastructure: Spartan-6 FPGA PLL and clock network resources required for 
the memory design.

Traffic Generator Operation
The Traffic Generator module contained within the synthesizable test bench can be 
parameterized to create various stimulus patterns for the memory design. It can produce 

X-Ref Target - Figure 1-38

Figure 1-38: MIG Example Design with Synthesizable Traffic Generator

Example Design

UG416_c1_38_091409

TB_Top

Clock Infrastructure

Spartan-6 FPGA MIG Wrapper

Parameter:
BEGIN_ADDR,
END_ADDR,
DATA_PATTERN,
CMD_PATTERN

P0

P1

P2

P3

P4

P5

Command_Instr

Spartan-6
FPGA

Memory
Controller

Block

Burst Length
User_Address
Command_Full

wr_full
wr_en
wr_data

rd_en
rd_data
rd_empty

Init Memory
Control

Traffic
Pattern

Generator

DDR Memory

http://www.xilinx.com


42 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 1: Getting Started

repetitive test patterns for verifying design integrity as well as pseudo-random data 
streams that model “real world” traffic.

The MIG tool creates a separate traffic generator for each enabled port of the User 
Interface. Each traffic generator can create traffic patterns for the entire address space of its 
associated port. A default address space for each port is assigned by the MIG tool using the 
BEGIN_ADDRESS and END_ADDRESS parameters found in the top-level test bench file 
(tb_top.v). See Modifying the Example Design, page 48 for information on using these 
parameters to change the port address space.

The test bench first initializes the entire address space of the port with the requested data 
pattern (data pattern options are discussed in the following subsections). The Init Memory 
Control block directs the traffic generator to step sequentially through all addresses in the 
port address space, writing the appropriate data value to each location in the memory 
device as determined by the selected data pattern. By default, the test bench uses the 
address as the Data pattern.

When the memory has been initialized, the traffic generator begins stimulating the User 
Interface ports to create traffic to and from the memory device. By default, the traffic 
generator sends pseudo-randomized commands to the port, meaning that the instruction 
sequences (R/W, R, W, etc.), addresses, and burst lengths are determined by pseudo-
random bitstream (PRBS) generator logic in the test bench. As with the address space and 
data pattern, the default PRBS command pattern can be changed as described in 
Modifying the Example Design, page 48.

The read data returning from the memory device is accessed by the traffic generator 
through the User Interface read data port and compared against internally generated 
“expect” data. If an error is detected (for example, there is a mismatch between read data 
and expect data), an error signal is asserted and the readback address, readback data, and 
expect data are latched into the error_status outputs.

Each stimulus data pattern is described in the following subsections.

Address as Data Pattern (Default)

This pattern writes each memory location with its own address, a simple test for finding 
address bus related issues (see Figure 1-39).

X-Ref Target - Figure 1-39

Figure 1-39: Address as Data Pattern on DQ Bus

mcb_cmd_addr_o[29:0]

Write 5 words to byte
address 0x440 with the
begin data the same as
the starting address

Read Command with burst
length of 10 to address 0x200
is accepted to the MCB when
mcb_cmd_full is deasserted

Next User
Write data to
address 0x800

Write Command is accepted to
the MCB when FIFO full is deasserted
for the user write data words
0x440, 0x444, 0x448, 0x44C, 0x450 

mcb_cmd_instr_o[2:0]

mcb_cmd_bl_o[5:0]

mcb_cmd_en_o

mcb_cmd_full_i

mcb_wr_data_o[31:0]

mcb_wr_en

UG416_c1_39_091409

00000200

00000440 00000448

00000450

00000800

00000804

00000808

0000080C

00000810

00000814

0000

0000044C00000444

00000440

01

49

http://www.xilinx.com


Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 43
UG416 June 22, 2011

MIG Example Design with Traffic Generator (CORE Generator Tool Native Interface Only)

Hammer Data Pattern

This pattern stresses the memory interface with simultaneous switching output (SSO) 
noise (see Figure 1-40). When multiple output drivers switch simultaneously, they can 
cause a voltage drop or ground bounce on the power planes of the PCB or inside the device 
package.

X-Ref Target - Figure 1-40

Figure 1-40: Hammer Data Pattern on DQ Bus

mcbx_dram_addr[12:0]

mcbx_dram_ras_n

mcbx_dram_cas_n

mcbx_dram_we_n

mcbx_dram_dq[15:0]

mcbx_dram_dq[15]

mcbx_dram_dq[14]

mcbx_dram_dq[13]

mcbx_dram_dq[12]

mcbx_dram_dq[11]

mcbx_dram_dq[10]

mcbx_dram_dq[9]

mcbx_dram_dq[8]

mcbx_dram_dq[7]

mcbx_dram_dq[6]

mcbx_dram_dq[5]

mcbx_dram_dq[4]

mcbx_dram_dq[3]

mcbx_dram_dq[2]

mcbx_dram_dq[1]

mcbx_dram_dq[0]

mcbx_dram_dqs

UG416_c1_40_091409

0000 0000

0000
zzzzzzzz

000 000 000 000 000 000000 00

http://www.xilinx.com


44 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 1: Getting Started

Neighbor Data Pattern

This pattern is similar to the Hammer pattern with the exception that one DQ pin remains 
Low on any given cycle (see Figure 1-41). This pattern can be used to measure the degree of 
noise coupling on a static I/O pin due to SSO noise created by other pins.

X-Ref Target - Figure 1-41

Figure 1-41: Neighbor Data Pattern on DQ Bus

UG416_c1_41_091409

mcbx_dram_dqs

mcbx_dram_dq[15:0]

mcbx_dram_dq[15]

mcbx_dram_dq[14]

mcbx_dram_dq[13]

mcbx_dram_dq[12]

mcbx_dram_dq[11]

mcbx_dram_dq[10]

mcbx_dram_dq[9]

mcbx_dram_dq[8]

mcbx_dram_dq[7]

mcbx_dram_dq[6]

mcbx_dram_dq[5]

mcbx_dram_dq[4]

mcbx_dram_dq[3]

mcbx_dram_dq[2]

mcbx_dram_dq[1]

mcbx_dram_dq[0]

mcbx_dram_we_n

mcbx_dram_cas_n

mcbx_dram_ras_n

zzzzzz
F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 E 0 D 0 B 0 7 0

http://www.xilinx.com


Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 45
UG416 June 22, 2011

MIG Example Design with Traffic Generator (CORE Generator Tool Native Interface Only)

Walking 1s and Walking 0s Data Pattern

The Walking 1s and Walking 0s patterns (see Figure 1-42 and Figure 1-43, respectively) 
ensure that each memory bit location can be set to both 1 and 0, independently from other 
bits. The DQ bus connectivity on the PCB can also be verified with these tests.

X-Ref Target - Figure 1-42

Figure 1-42: Walking 1s Data Pattern on DQ Bus

mcbx_dram_dq[15:0]

mcbx_dram_dq[15]

mcbx_dram_dq[14]

mcbx_dram_dq[13]

mcbx_dram_dq[12]

mcbx_dram_dq[11]

mcbx_dram_dq[10]

mcbx_dram_dq[9]

mcbx_dram_dq[8]

mcbx_dram_dq[7]

mcbx_dram_dq[6]

mcbx_dram_dq[5]

mcbx_dram_dq[4]

mcbx_dram_dq[3]

mcbx_dram_dq[2]

mcbx_dram_dq[1]

mcbx_dram_dq[0]

mcbx_dram_dqs

mcbx_dram_we_n

mcbx_dram_cas_n

mcbx_dram_ras_n

zzzzzzzz

UG416_c1_42_091409

http://www.xilinx.com


46 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 1: Getting Started

X-Ref Target - Figure 1-43

Figure 1-43: Walking 0s Data Pattern on DQ Bus

mcbx_dram_dq[15:0]

mcbx_dram_dq[15]

mcbx_dram_dq[14]

mcbx_dram_dq[13]

mcbx_dram_dq[12]

mcbx_dram_dq[11]

mcbx_dram_dq[10]

mcbx_dram_dq[9]

mcbx_dram_dq[8]

mcbx_dram_dq[7]

mcbx_dram_dq[6]

mcbx_dram_dq[5]

mcbx_dram_dq[4]

mcbx_dram_dq[3]

mcbx_dram_dq[2]

mcbx_dram_dq[1]

mcbx_dram_dq[0]

mcbx_dram_we_n

mcbx_dram_cas_n

mcbx_dram_ras_n

zzzzzzzz

UG416_c1_43_091409

mcbx_dram_dqs

http://www.xilinx.com


Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 47
UG416 June 22, 2011

MIG Example Design with Traffic Generator (CORE Generator Tool Native Interface Only)

PRBS Data Pattern

This pattern creates PRBS data. The starting address of each data burst is used as a seed to 
a 32-bit LFSR circuit to generate bursts with randomized data, approximating a “real 
world” application test.

Setting Up for Simulation
In simulation, the user ports in the traffic generator are assigned with a small address 
range to avoid memory overflow if the system has limited physical memory installed. For 
hardware testing, the user can manually modify the HWTESTING parameter in 
example_top for a larger address space range. 

See the “Simulation” section in Spartan-6 FPGA Memory Controller User Guide [Ref 1] for 
more details on simulating designs with the MCB.

Functional Simulation

To simulate the MIG example design or the MIG user design, the Xilinx® UNISIM library 
must be compiled and mapped to the simulator. Currently, MIG generated designs are 
supported only for Xilinx ISim and ModelSim version 6.4b or above. However, the 
encrypted model of the Spartan-6 FPGA MCB is provided for ISim, ModelSim, and 
Cadence Incisive Enterprise Simulator (IES). EDK generated designs using the MCB are 
supported on all three of these simulators.

The Traffic Generator test bench provided with the example design allows 
pre-implementation functional simulations to be performed on the generated memory 
interface solution.

Memory Devices Supported for Functional Simulation

The MIG tool supports Micron DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, and LPDDR 
memory devices. It also supports Elpida DDR2 SDRAM memory devices for simulation. 
ModelSim and ISim are the simulation tools supported. ModelSim supports all of the listed 
memory devices, while ISim supports only the Micron devices.

X-Ref Target - Figure 1-44

Figure 1-44: PRBS Data Pattern on DQ Bus

mcb_cmd_addr_o[29:0]

Write 11 random words
to starting byte address
0x480. 0x480 is the seed
used in the LFSR for
generating the random data.

Asserting Write
Command to
address 0x480.

mcb_cmd_instr_o[2:0]

mcb_cmd_bl_o[5:0]

mcb_cmd_en_o

mcb_cmd_full_i

mcb_wr_data_o[31:0]

mcb_wr_full_i

mcb_wr_en

MCB Controller
accepted Write
Command data.

UG416_c1_44_091409

00000200

CA492BD8 2924AE2F 492B8C62

925718C4

24AE314D

CA4930D8

A49

52495C5E94925775

00000480

01

1012

492571BD 2495C631

A492B8BC 924AE37A

http://www.xilinx.com


48 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 1: Getting Started

To run the simulation:

1. Go to this directory:

<project_dir>/<component_name>/example_design/sim/functional

2. Run the script command that corresponds to the chosen simulation tool and operating 
system:

• Windows

- For ModelSim, type at the prompt: sim.do

- For ISim, type at the prompt: isim

• Linux

- For ModelSim, type at the prompt: source sim.do

- For ISim, type at the prompt: source isim.do

Implementing the Example Design
The MIG tool automatically generates the ise_flow.bat script file found in the par 
folder of the example design. This script runs the design through the synthesis, translate, 
map, and par operations. Refer to this file to see all recommended build options for the 
design.

Modifying the Example Design
The test bench in the MIG generated example design can be modified to implement 
different data and command patterns. This section defines the test bench parameters and 
signal names that should be understood when making changes to the example design.

Top-Level Parameters

The top-level test bench file (tb_top.v) contains several parameters that can be modified 
to change the behavior of the traffic generator. Table 1-10 describes these parameters and 
identifies any default values. In general, the data pattern and address space parameters are 
the most likely to be modified, because the other parameters are normally fixed 
characteristics of the memory and MCB configuration.

The easiest way to change the data pattern implemented by the traffic generator is to open 
the example_top.v file in the rtl directory and edit the local parameter for Data Mode 
(for example, C3_p0_DATA_MODE). The four-bit code for this parameter can be changed 
using the binary values defined for the data_mode_i[3:0] signals in Table 1-12, page 51.

http://www.xilinx.com


Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 49
UG416 June 22, 2011

MIG Example Design with Traffic Generator (CORE Generator Tool Native Interface Only)

Table 1-10: Parameters for the TB_TOP Module

Parameter Parameter Description Parameter Value

BEGIN_ADDRESS Sets the memory start address 
boundary

This parameter defines the start boundary for the port 
address space. The least-significant bits [3:0] of this 
value are ignored.

DATA_PATTERN
Sets the data pattern to be 
generated

Valid settings for this parameter are:

ADDR (Default): The address is used as a data 
pattern.

HAMMER: All 1s are on the DQ pins during the 
rising edge of DQS, and all 0s are on the DQ pins 
during the falling edge of DQS.

WALKING1: Walking 1s are on the DQ pins and the 
starting position of 1 depends on the address value.

0: Walking 0s are on the DQ pins and the starting 
position of 1 depends on the address value.

NEIGHBOR: The Hammer pattern is on all DQ pins 
except one. The address determines the exception 
pin location.

PRBS: A 32-stage LFSR generates random data and 
is seeded by the starting address.

DWIDTH The MIG tool sets the default 
based on the User Data port 
width

Valid settings for this parameter are 32, 64, and 128 bits.

END_ADDRESS Sets the memory-end address 
boundary

This parameter defines the end boundary for the port 
address space. The least-significant bits [3:0] of this 
value are ignored.

FAMILY Indicates the Family type The value of this parameter is “SPARTAN6”.

NUM_DQ_PINS The MIG tool sets the default 
based on the number of data 
(DQ) pins for the selected 
memory

Valid settings for this parameter are “4”, “8”, and “16”.

PORT_MODE The MIG tool sets the default 
based on the port 
configuration (bidirectional, 
W only, or R only)

Valid settings for this parameter are:

BI_MODE: Generate a WRITE data pattern and 
monitor the READ data for comparison.

WR_MODE: Generate only WRITE data patterns. 
No comparison logic is generated for the port.

RD_MODE: Generate only READ control logic for 
the port.

PRBS_EADDR_MASK_POS
Sets the 32-bit AND MASK 
position

This parameter is used with the PRBS address 
generator to shift random addresses down into the port 
address space. The END_ADDRESS value is ANDed 
with the PRBS address for bit positions that have a “1” 
in this mask.

PRBS_SADDR_MASK_POS Sets the 32-bit OR MASK 
position

This parameter is used with the PRBS address 
generator to shift random addresses up into the port 
address space. The BEGIN_ADDRESS value is ORed 
with the PRBS address for bit positions that have a “1” 
in this mask.

http://www.xilinx.com


50 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 1: Getting Started

Traffic Generator Parameter

The CMD_PATTERN parameter can be modified within the Traffic Generator module (see 
Table 1-11). This parameter is not brought to the top-level test bench because it should not 
be modified under normal circumstances. However, certain situations might require a 
change to the default value, such as when address, burst length, and instruction values are 
provided from a block RAM (see Custom Command Sequences, page 54).

Traffic Generator Signal Descriptions

Table 1-12 describes all traffic generator signals. In the example design, the Init Memory 
Control block controls most of these signals to implement the default test flow (that is, 
initialize the memory with the data pattern, then start running traffic by generating 
pseudo-random command patterns). Any modification of the design to control these 
signals by other means should only be done with a thorough understanding of their 
behavior.

Table 1-11: Parameter for the Traffic Generator Module

Parameter Name Parameter Description Parameter Value

CMD_PATTERN Parameter for setting 
command pattern 
circuits to be 
generated. For larger 
devices, the 
CMD_PATTERN can 
be set to 
“CGEN_ALL”. This 
parameter enables all 
supported command 
pattern circuits to be 
generated. However, it 
is sometimes necessary 
to limit a specific 
command pattern 
because of limited 
resources in a smaller 
device.

Valid settings for this signal are:

CGEN_FIXED: The address, burst length, 
and instruction are taken directly from the 
fixed_addr_i, fixed_bl_i, fixed_instr_i inputs.

CGEN_SEQUENTIAL: The address is 
incremented sequentially, and the increment 
is determined by the data port size.

CGEN_BRAM: The address, burst length, 
and instruction are taken directly from the 
bram_cmd_i input bus.

CGEN_PRBS: A 32-stage LFSR generates 
pseudo-random addresses, burst lengths, 
and instruction sequences. The seed can be 
set from the 32-bit cmd_seed input.

CGEN_ALL (Default): This option turns on 
all of the above options and allows 
addr_mode_i, instr_mode_i, and bl_mode_i 
to select the type of generation during run-
time.

http://www.xilinx.com

