
Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 61
UG416 June 22, 2011

AXI Spartan-6 FPGA DDRx Memory Controller

Simulation Considerations
To simulate a design using axi_s6_ddrx, the user must create a test bench that connects a
memory model to the axi_s6_ddrx I/O signals. This is generally performed by editing the
system_tb.v/.vhd test bench template file created by the Simgen tool in XPS to add a
memory model. Alternatively, users can transfer the simulator compile commands from
Simgen into their own custom simulation/test bench environment.

Note: axi_s6_ddrx does not generally support structural simulation because it is not a supported
flow for the underlying MIG PHYs. Thus structural simulation is not recommended.

An axi_s6_ddrx simulation should be performed in the behavioral/functional level and
requires a simulator capable of mixed-mode Verilog and VHDL language support.

It might be necessary for the test bench to place weak pull-down resistors on all DQ and
DQS signals so that the calibration logic can resolve logic values under simulation.
Otherwise, “X” propagation of input data might cause simulation of the calibration logic to
fail.

For behavioral simulation, the sysclk_2x, sysclk_2x_180, and ui_clk ports of axi_s6_ddrx
must also be completely phase-aligned.

Top-Level Parameters
Table 2-1 lists the AXI parameters present on the AXI Spartan-6 FPGA DDRx Memory
Controller. The <Port_Num> is 1 through 6. For details on the other parameters, refer to the
Spartan-6 FPGA Memory Controller User Guide [Ref 1].

Table 2-1: AXI Per-Port Top-Level Parameters

Parameter Name
Default
Value

Format
(Range)

Description

C_S<Port_Num>_AXI_ENABLE 0 Integer
(0, 1)

Enables the AXI/MCB port.

C_S<Port_Num>_AXI_ADDR_WIDTH 32 Integer
(32)

Width of all ADDR signals.

C_S<Port_Num>_AXI_DATA_WIDTH 32 Integer
(32,64,128)

Width of AXI WDATA, RDATA
signals.

C_S<Port_Num>_AXI_ENABLE_AP 0 Integer
(0, 1)

Enables Auto-Precharge on each
transaction sent to the memory
controller.

C_S<Port_Num>_AXI_ID_WIDTH 4 Integer
(1-16)

Width of all ID signals for all
channels.

C_S<Port_Num>_AXI_PROTOCOL AXI4 String
(AXI3, AXI4)

Specifies the AXI protocol.

C_S<Port_Num>_AXI_REG_EN0 0x00000 Hexadecimal Reserved.

C_S<Port_Num>_AXI_REG_EN1 0x01000 Hexadecimal Reserved.

C_S<Port_Num>_AXI_STRICT_COHERENCY 1 Integer
(0, 1)

Delays B channel response until it
can be guaranteed the write has
been commited to memory.
Required when accessing the same
address between different ports.

http://www.xilinx.com

62 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 2: EDK Flow Details

Ports and I/O Signals

Table 2-2 lists the available AXI Spartan-6 FPGA DDRx Memory Controller Port names,
signal direction, and width.

C_S<Port_Num>_AXI_SUPPORTS_NARROW_BURST 1 Integer
(0, 1)

Enables logic to support narrow
transfers over MCB. Required if the
slave receives transactions smaller
than the AXI/MCB native data
width.

C_S<Port_Num>_AXI_SUPPORTS_READ 1 Integer
(0, 1)

Indicates whether to include the
AXI AR/R channels.

C_S<Port_Num>_AXI_SUPPORTS_WRITE 1 Integer
(0, 1)

Indicates whether to include the
AXI AW/W/B channels.

Table 2-1: AXI Per-Port Top-Level Parameters (Cont’d)

Parameter Name
Default
Value

Format
(Range)

Description

Table 2-2: Ports and I/O Signals

Port Name Direction Width

System Signals

sysclk_2x Input N/A

sysclk_2x_180 Input N/A

pll_ce_0 Input N/A

pll_ce_90 Input N/A

pll_lock Input N/A

pll_lock_bufpll_o Output N/A

sysclk_2x_bufpll_o Output N/A

sysclk_2x_180_bufpll_o Output N/A

pll_ce_0_bufpll_o Output N/A

pll_ce_90_bufpll_o Output N/A

sys_rst Input N/A

ui_clk (same signal as mcb_drp_clk;
see Spartan-6 FPGA Memory
Controller User Guide [Ref 1])

Input N/A

uo_done_cal Output N/A

AXI Signals (per port)

s<Port_Num>_axi_aclk Input N/A

s<Port_Num>_axi_awid Input [C_s<Port_Num>_AXI_ID_WIDTH-1:0]

s<Port_Num>_axi_awaddr Input [C_s<Port_Num>_AXI_ADDR_WIDTH-1:0]

s<Port_Num>_axi_awlen Input [7:0]

s<Port_Num>_axi_awsize Input [2:0]

http://www.xilinx.com

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 63
UG416 June 22, 2011

AXI Spartan-6 FPGA DDRx Memory Controller

s<Port_Num>_axi_awburst Input [1:0]

s<Port_Num>_axi_awlock Input [1:0]

s<Port_Num>_axi_awcache Input [3:0]

s<Port_Num>_axi_awprot Input [2:0]

s<Port_Num>_axi_awqos Input [3:0]

s<Port_Num>_axi_awvalid Input N/A

s<Port_Num>_axi_awready Output N/A

s<Port_Num>_axi_wdata Input [C_S<Port_Num>_AXI_DATA_WIDTH-1:0]

s<Port_Num>_axi_wstrb Input [C_S<Port_Num>_AXI_DATA_WIDTH/8-1:0]

s<Port_Num>_axi_wlast Input N/A

s<Port_Num>_axi_wvalid Input N/A

s<Port_Num>_axi_wready Output N/A

s<Port_Num>_axi_bid Output [C_S<Port_Num>_AXI_ID_WIDTH-1:0]

s<Port_Num>_axi_bresp Output [1:0]

s<Port_Num>_axi_bvalid Output N/A

s<Port_Num>_axi_bready Input N/A

s<Port_Num>_axi_arid Input [C_S<Port_Num>_AXI_ID_WIDTH-1:0]

s<Port_Num>_axi_araddr Input [C_S<Port_Num>_AXI_ADDR_WIDTH-1:0]

s<Port_Num>_axi_arlen Input [7:0]

s<Port_Num>_axi_arsize Input [2:0]

s<Port_Num>_axi_arburst Input [1:0]

s<Port_Num>_axi_arlock Input [1:0]

s<Port_Num>_axi_arcache Input [3:0]

s<Port_Num>_axi_arprot Input [2:0]

s<Port_Num>_axi_arqos Input [3:0]

s<Port_Num>_axi_arvalid Input N/A

s<Port_Num>_axi_arready Output N/A

s<Port_Num>_axi_rid Output [C_s<Port_Num>_AXI_ID_WIDTH-1:0]

s<Port_Num>_axi_rdata Output [C_s<Port_Num>_AXI_DATA_WIDTH-1:0]

s<Port_Num>_axi_rresp Output [1:0]

s<Port_Num>_axi_rlast Output N/A

s<Port_Num>_axi_rvalid Output N/A

s<Port_Num>_axi_rready Input N/A

Memory Signals

mcbx_dram_addr Output [C_MEM_ADDR_WIDTH-1:0]

Table 2-2: Ports and I/O Signals (Cont’d)

Port Name Direction Width

http://www.xilinx.com

64 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 2: EDK Flow Details

mcbx_dram_ba Output [C_MEM_BANKADDR_WIDTH-1:0]

mcbx_dram_ras_n Output N/A

mcbx__dram_cas_n Output N/A

mcbx_dram_we_n Output N/A

mcbx_dram_cke Output N/A

mcbx_dram_clk Output N/A

mcbx_dram_clk_n Output N/A

mcbx_dram_dq Input/Output [C_NUM_DQ_PINS-1:0]

mcbx_dram_dqs Input/Output N/A

mcbx_dram_dqs_n Input/Output N/A

mcbx_dram_udqs Input/Output N/A

mcbx_dram_udqs_n Input/Output N/A

mcbx_dram_udm Output N/A

mcbx_dram_ldm Output N/A

mcbx_dram_odt Output N/A

mcbx_dram_ddr3_rst Output N/A

rzq Input/Output N/A

zio Input/Output N/A

Table 2-2: Ports and I/O Signals (Cont’d)

Port Name Direction Width

http://www.xilinx.com

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 65
UG416 June 22, 2011

Chapter 3

Debugging MCB Designs

This chapter defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. It
contains these sections:

• Introduction

• Debug Tools

• Simulation Debug

• Synthesis and Implementation Debug

• Hardware Debug

Introduction
The Spartan®-6 FPGA MCB simplifies the challenges associated with memory interface
design. However, every application environment is unique and proper due diligence is still
required to ensure a robust design. Careful attention must be given to functional testing
through simulation, proper synthesis and implementation, adherence to PCB layout
guidelines, and board verification through IBIS simulation and signal integrity analysis.

This chapter defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. Details
are provided on:

• Functional verification using the MCB simulation model

• Design implementation verification

• Board layout verification

• Using the MCB physical layer to debug board-level issues

• General board-level debug techniques

The two primary issues encountered during verification of a memory interface are:

• Calibration not completing properly

• Data corruption during normal operation

Issues might be seen in simulation and/or in hardware due to various root cause
explanations. Figure 3-1 shows the overall flow for debugging problems associated with
these two general types of issues.

http://www.xilinx.com

66 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 3: Debugging MCB Designs

If this chapter does not help to resolve the issue, refer to Additional Resources, page 10 for
support assistance.

Debug Tools
Many tools are available to debug memory interface design issues. This section indicates
which resources are useful for debugging a given situation.

Example Design
Generation of an MCB design through the MIG tool produces an Example Design and a
User Design. The Example Design includes a synthesizable test bench with a Traffic
Generator that has been fully verified in simulation and hardware. This design can be used
to observe the behavior of the MCB and can also aid in identifying board-related problems.
Refer to MIG Example Design with Traffic Generator (CORE Generator Tool Native
Interface Only), page 41 for complete details on this design. This chapter further discusses
using the Example Design to verify setup of a proper simulation environment and to
perform hardware validation.

Debug Signals
The MIG tool includes a Debug Signals Control option on the FPGA Options screen.
Enabling this feature allows all Command Path, Write Path, and Read Path signals
documented in the “User (Fabric Side) Interface” section of Spartan-6 FPGA Memory
Controller User Guide [Ref 1] to be monitored using the ChipScope™ Analyzer. Selecting
this option port maps the debug signals to the ChipScope ILA/ICON modules in the
design top module. The ChipScope ILA module also sets up the default ChipScope tool
trigger on the calib_done (end of calibration) and error signals (in the Example Design, the
error flag from the traffic generator indicates a mismatch between actual and expected
data). Chapter 1 provides details on enabling this debug feature.

Reference Boards
SP601 and SP605 are Xilinx development boards that interface the MCB to external DDR2
and DDR3 memory devices, respectively. These boards are fully validated and can be used
to test user designs and analyze board layout.

X-Ref Target - Figure 3-1

Figure 3-1: Spartan-6 FPGA MCB Debug Flowchart

UG416_c2_01_091409

Symptoms in Simulation/Hardware

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Simulation Debug

Synthesis/Implementation Debug

Hardware Debug

http://www.xilinx.com

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 67
UG416 June 22, 2011

Simulation Debug

ChipScope Pro Tool
The ChipScope Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software cores
directly into the design. The ChipScope Pro tool allows the user to set trigger conditions to
capture application and MCB port signals in hardware. Captured signals can then be
analyzed through the ChipScope Pro Logic Analyzer tool [Ref 5].

Simulation Debug
Figure 3-2 shows the debug flow for simulation.

Additional Debug Signals (Simulation Only)
The UNISIM model of the MCB primitive within the top-level MIG wrapper is encrypted,
preventing access to internal nodes. However, some additional signals that might be useful
in simulation debug have been made accessible by bringing them to the top level of the
UNISIM model. These signals can only be viewed in simulation (see Figure 3-3); they are
not accessible in hardware. The signals are located in the hierarchy path
*/memc*_mcb_raw_wrapper_inst/samc_0/B_MCB_INST.

X-Ref Target - Figure 3-2

Figure 3-2: Simulation Debug Flowchart

Verify Successful Simulation Using
Example Design. Identify any Issues with

Simulation Environment

Debug Issues with User Design Simulation

UG416_c2_02_091409

Open WebCase

X-Ref Target - Figure 3-3

Figure 3-3: Simulation Debug Signals Inside MCB in ModelSim Environment.

http://www.xilinx.com

68 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 3: Debugging MCB Designs

Table 3-1 lists the available simulation debug signals.

Table 3-1: Simulation Debug Signals

Block Domain Internal Signal Name Description Clock Domain

Clocks
sysclk Internally generated clock from sysclk2x, 0° phase shift. N/A

sysclk_90 Internally generated clock from sysclk2x, 90° phase shift. N/A

Controller

ctrl_state[144:0] Controller state (see Table 3-2) ASCII radix. sysclk90

ctrl_rd_en Controller read enable. sysclk90

ctrl_wr_en Controller write enable. ~sysclk90

ctrl_cmd_in
Controller input command flag from the arbiter or
calibration logic.

~sysclk90

ctrl_cmd[2:0] Controller command received. ~sysclk90

ctrl_cmd_cnt[9:0]
Controller current command count. This bus indicates
the number of times to execute the current command. ~sysclk90

Arbiter and Data
Capture

arb_cmd_en[5:0] Arbiter enable to command FIFO. ~sysclk90

arb_p_en[7:0] Arbiter enable to data FIFO. ~sysclk90

dqi_p[15:0]
Single data rate DQ bus between capture blocks and data
FIFOs, rising edge.

sysclk90

dqi_n[15:0]
Single data rate DQ bus between capture blocks and data
FIFOs, falling edge.

sysclk90

sysclk_sync
First valid data on DQ bus. It is registered on the next
sysclk_90 edge.

N/A

dqs_first First edge of DQS occurred. This signal indicates start of
read capture cycle.

N/A

Calibration

cal_start
Start calibration. This pin forces the start of a calibration
cycle.

ui_clk

cal_active Calibration currently running. sysclk90

cal_dq_done_cnt[3:0] Current DQ signal calibrating. sysclk90

cal_state[144:0] Calibration state (see Table 3-3) ASCII radix. sysclk90

cal_dqs_state[2:0]
DQS Calibration state. The states proceed from 0 to 7 in
numerical order.

sysclk90

cal_dqs_p Single data rate DQSP. Should be all 1’s during
calibration.

sysclk90

cal_dqs_n
Single data rate DQSN. Should be all 0’s during
calibration.

sysclk90

cal_udqs_p
Single data rate UDQSP. Should be all 1’s during
calibration.

dqs_ioi_m

cal_udqs_n
Single data rate UDQSN. Should be all 0’s during
calibration. dqs_ioi_m

cal_dq_p
Single data rate DQP selected by cal_dq_done_cnt.
Should be all 1’s during calibration.

sysclk90

cal_dq_n
Single data rate DQN selected by cal_dq_done_cnt.
Should be all 0’s during calibration.

~sysclk90

http://www.xilinx.com

Spartan-6 FPGA Memory Interface Solutions www.xilinx.com 69
UG416 June 22, 2011

Simulation Debug

Table 3-2: FSM State Definitions for ctrl_state

State Description

0x00 Idle

0x01 Load Mode Register

0x02 Mode Register Wait

0x03 Precharge

0x04 Precharge Wait

0x05 Auto Refresh

0x06 Auto Refresh Wait

0x07 Active

0x08 Active Wait

0x09 First Read

0x0A Burst Read

0x0B Read Wait

0x0C First Write

0x0D Burst Write

0x0E Write Wait

0x0F Init Count 200

0x10 Init Count 200 Wait

0x11 ZQCL

0x12 Write Read

0x13 Read Write

0x14 Dummy First Read

0x15 Deep Memory State

0x16 Jump State

0x17 Init Done

0x18 Reset

0x19 Reset Wait

0x1A Precharge All

0x1B Precharge All Wait

0x1C Self Refresh Enter

0x1D Self Refresh Wait

0x1E Self Refresh Exit

0x1F Self Refresh Exit Wait

http://www.xilinx.com

70 www.xilinx.com Spartan-6 FPGA Memory Interface Solutions
UG416 June 22, 2011

Chapter 3: Debugging MCB Designs

Verify Simulation using the Example Design
The Example Design generated by the MIG tool includes a simulation test bench,
appropriately set up the memory model and parameter file based on memory selection in
the MIG tool, and a ModelSim .do script file. Refer to MIG Example Design with Traffic
Generator (CORE Generator Tool Native Interface Only), page 41 for detailed steps on
running the Example Design simulation.

Successful completion of this Example Design simulation verifies a proper simulation
environment. This shows that the simulation tool and Xilinx libraries are set up correctly.
For detailed information on setting up Xilinx libraries, refer to COMPXLIB in the Command
Line Tools User Guide [Ref 6] and the Synthesis and Simulation Design Guide [Ref 4]. For
simulator support and detailed information on the MCB simulation model, refer to
Simulation Debug.

A working Example Design simulation completes memory initialization and runs traffic in
response to the Traffic Generator stimulus. Successful completion of memory initialization
and calibration results in the assertion of the calib_done signal. When this signal is
asserted, the Traffic Generator takes control and begins executing writes and reads
according to its parameterization. Refer to MIG Example Design with Traffic Generator
(CORE Generator Tool Native Interface Only), page 41 for details on the available Traffic
Generator data patterns and corresponding top-level parameters.

Table 3-3: FSM State Definitions for cal_state

State Description

0x00 Init

0x02 Reset DRP interface

0x16 Preamble Pulldown

0x17 Preamble Read

0x18 Preamble Undo

0x01 Calibrate DRP/IOI

0x03 Issue Write Command

0x04 Wait for Write Command

0x05 Issue Read Command

0x06 Wait for Read Command

0x07 Wait for DRP Interface

0x08 DQS Calibration

0x09 Pre Done Calibration

0x0E Done Calibration

http://www.xilinx.com

