

图 14-7 Color Key 操作

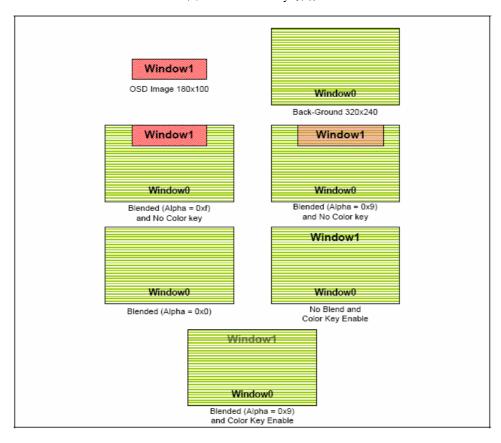


图 14-8 Color key 功能配置

14.2.8. VTIME 控制器操作

VTIME 主要分为两个模块。一个是 VTIME_RGB_TV 模块,用于 RGB 接口,ITU_R601 接口和 TV 编码器接口时序控制。另一个是用于 I80 接口时序控制的模块。

1. RGB 接口

VTIME 产生控制信号,如 RGBZ-VSYNC,RGB_HSYNC,RGB_VDEN 和 RGB_VCLK 信号。这些控制信号与 VSFR 寄存器内的 VIDTCON0/1/2 寄存器的配置有很大的关系。根据 VSFR 内显示控制寄存器的可编程配置,VTIME 模块可以产生程序控制信号,这些控制信号适合于很多不同类型的显示设备。

RGB_VSYNC 信号用来导致 LCD 行指针从显示的项层开始覆盖。RGB_VSYNC 和 RGB_HSYNC 堆栈产生由 HOZVAL 区域和 LINEVAL 寄存器的配置控制。HOZVAL 和 LINEVAL 由 LCD 组的尺寸决定,具体等式如下:

HOZVAL=(水平显示尺寸)-1

LINEVAL=(垂直显示尺寸)-1

RGB_VCLK 信号的速率可以由 VIDCON0 寄存器内的 CLKVAL 领域控制。RGB_VCLK 和 CLKVAL 之间的关系见表 14-4. CLKVAL 最小值为 1.

RGB_VCLK(Hz)=HCLK/(CLKVAL+1) CLKVAL>=1

表 14-4 VCLK 和 CLKVAL 之间的关系

CLKVAL	60MHz/X	VCLK
1	60MHz/2	30.0MHz
2	60MHz/3	20.0MHz
3	60MHz/4	15.0MHz
•••		
63	60MHz/64	937.5kHz

通过 VSYNC,VBPD,VFPD,HSYNC,HBPD,HFPD,HOZVAL 和 LINEVAL 可以配置 RGB_HSYNC 和 RGB_VSYNC 信号。

帧速率是 RGB_VSYNC 信号频率。帧速率与 VSYNC, VBPD, VFPD, LINEVAL, HSYNC, HBPD, HFPD, HOZVAL, CLKVAL 寄存器有关。很多 LCD 设备有它们自己的帧速率。通过下面关系式可以计算帧速率

帧速率=1/[{(VSPW+1)+(VBPD+1}+(LIINEVAL+1)+(VFPD+1) } *{(HSPW+1} + (HBPD+1) + (HFPD+1)+(HOZVAL+1)}*{(CLKVAL+1) /(时钟源频率)}]

2.I80 接口控制器

VTIME I80 控制显示控制器的 CPU 类型 LDI, 且具有以下功能:

- ●产生 I80 接口控制信号
- ●CPU 类型 LDI 命令控制信号
- ●VDMA 和 VDPRCS 的时序控制
- (1) 产生输出控制信号

SYS_CS0, SYS_CS1, SYS_WE, SYS_RS 控制信号由 VTIME_I80 产生,这些信号的时序参数 LCD_CS_SETUP,LCD_WR_SETUP,LCD_WR_ACT, LCD_WR_HOLD 可以通过 I80IFCONA0 和 I80CONA1 SFR 设置。

(2) 部分显示控制

尽管部分显示控制是 CPU 类型 LDI 的主要性能,但是 VTIME_I80 不支持这种功能。然而,可以通过 SFR 设置执行部分显示控制功能。

14.2.9. LDI 命令控制

LDI可以接收命令和数据。命令表示 LDI 内的 SFR 选择的索引。在命令和数据的控制信号内,只有 SYS_RS 信号有不同的操作。通常 SYS_RS 的命令极性是 1,反之亦然。

显示控制器有两种命令控制形式。一种是自动命令控制形式,另一种是常规命令控制形式。自动命令 在预定速率内自动发出。通过 S/W 控制可以发出常规命令。

命令设置

1.自动命令

LDE_CMD5 \leftarrow 0x99

如果在每 10 帧内 0x1, 0x32, 0x2, 0x8f, 0x4, 0x99 请求发送到 LDI, 可以通过下面的步骤完成。 LDE_CMD0←0x1, LDE_CMD1←0x32, LDE_CMD2←0x2, LDE_CMD3←0x8f, LDE_CMD4←0x4,

CMD0_EN \leftarrow 0x2, CMD1_EN \leftarrow 0x2, CMD2_EN \leftarrow 0x2, CMD3_EN \leftarrow 0x2, CMD4_EN \leftarrow 0x2, CMD4_EN \leftarrow 0x2

 $CMD0_RS \leftarrow 0x1$, $CMD1_RS \leftarrow 0x0$, $CMD2_RS \leftarrow 0x1$, $CMD3_RS \leftarrow 0x0$, $CMD4_RS \leftarrow 0x1$,

 $CMD5_RS \leftarrow 0x1$

AUTO_CMD_RATE ← 0x5

注意:

- 1) RS 极性可以参考 LDI 说明书。
- 2) LDI_CMD 不需要从 LDI_CMD0 到 LDI_CMD11 连续使用。例如,可以只用 LDI_CMD0, LDI_CMD3 和 LDI CMD11.
 - 3) 最多有12个可用的自动命令。

2.常规命令

- 1) 可以向 LDI_CMO~11 内放入命令(最多放 12 条命令)
- 2) 在 LDI_CMDCON0 内设置 COMx_EN,可以使能常规命令 x。例如,如果想使能命令 4,可以设置 CMD4 EN 到 0x01.
 - 3) 在 I80IFCONB0/1 内设置 NORMAL_CMD_ST.

显示控制器命令操作有很多不同的特性,如:

- 每12条命令可以有自动/常规/自动和常规模式。
- 在常规操作下,显示控制器在帧之间最多可以传送12条命令。
- 命令产生的顺序是 CMD0←CMD1←CMD2←CMD3←······CMD10←CMD11
- 可以跳过无效的命令。
- 发送多于 12 条命令。只有在常规模式下可以发送多于 12 条的命令,适合系统初始化。

14.2.10. RGB 接口 IO

表 14-5 RGB 接口管脚描述

名称	类型	源/目的地	描述
RGB_HSYNC	输出	Pad	水平同步. 信号
RGB_VSYNC	输出	Pad	垂直同步. 信号
RGB_VCLK	输出	Pad	LCD 视频时钟
RGB_VDEN	输出	Pad	数据使能

RGB_VD[23:0]	输出	Pad	RGB 数据输出。
			在 16bpp 下,管脚匹配如下
			RGB_VD[23:19]:红
			RGB_VD[15:10]:绿
			RGB_VD[7:3]:蓝

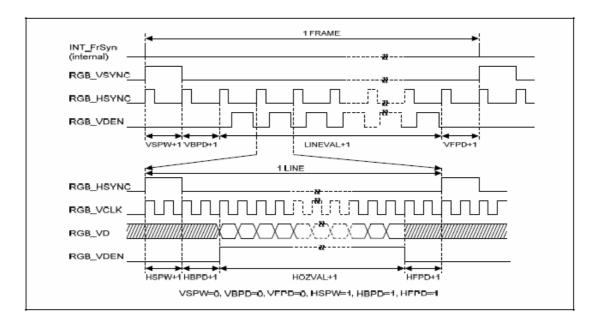


图 14-9 CD RGB 接口时序图

14.2.11. LCD I80 接口 IO

表 14-6 I80 CPU 接口管脚描述

名称	类型	源/目的地	描述
SYS_VDIN[17:0]	输入	Video mux	视频数据输入
SYS_VDOUT[17:0]	输出	Video mux	视频数据输出
SYS_CS0	输出	Video mux	LCDO 芯片选择
SYS_CS1	输出	Video mux	LCD1 芯片选择
SYS_WE	输出	Video mux	写使能

SYS_OE	输出	Video mux	输出使能
SYS_RS	输出	Video mux	寄存器/状态选择

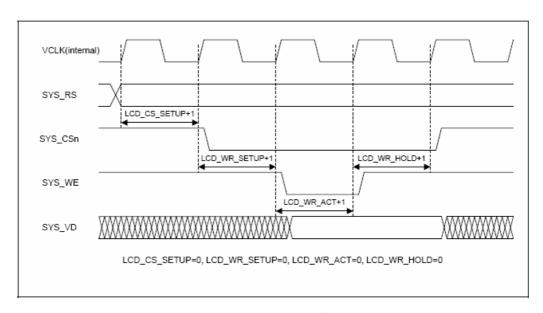


图 14-10 写周期时序图

14.2.12. ITU_R BT.601 接口 IO

表 14-7 ITU-R BT. 601 接口管脚描述

名称	类型	源/目的地	描述
V601_CLK	输出	Pad	ITU 601 数据时钟
*VEN_HREF	输出	Pad	数据使能
**VEN_VSYNC	输出	Pad	垂直同步信号
VEN_HSYNC	输出	Pad	水平同步信号
**VEN_FIELD	输出	Pad	FIELD 信号 (可选)
VEN_DATA[7:0]	输出	Pad	ITU601 YUV422 格式数据输出。

*VEN_HREF:数据空(当 I601HREF[0]=1)

数据使能(当 I601HREF[0]=0)

**VEN_VSYNC,VEN_FIELD

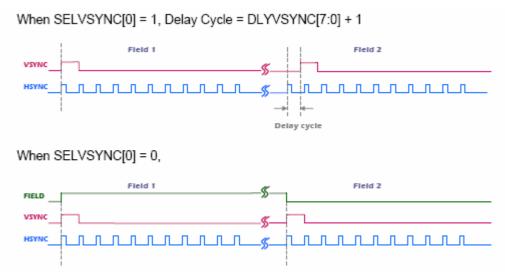


图 14-11 ITU-R BT.601 可控 Vsync

表 14-8 并行/串行 RGB, 601 数据管脚映射

14.2.13. LCD 数据管脚映射

并联 RGB 串联 RGB

		并联 RGB		串联	601	
	24BPP(888)	18BPP(666) 16BPP(565)		24BPP(888) 18BPP(666)		
VD[23]	R[7]	R[5]	R[4]	D[7]	D[5]	
VD[22]	R[6]	R[4]	R[3	D[6]	D[4]	
VD[21]	R[5]	R[3]	R[2]	D[5]	D[3]	
VD[20]	R[4]	R[2]	R[1]	D[4]	D[2]	
VD[19]	R[3]	R[1]	R[0]	D[3]	D[1]	
VD[18]	R[2]	R[0]	1	D[2]	D[0]	
VD[17]	R[1]	-	-	D[1]	-	
VD[16]	R[0]	-	-	D[0]	-	
VD[15]	G[7]	G[5]	G[5]	-	-	

VD[14]	CICI	C[4]	C[4]			
VD[14]	G[6]	G[4]	G[4]	-	-	
VD[13]	G[5]	G[3]	G[3]	-	-	
VD[12]	G[4]	G[2]	G[2]	-	-	
VD[11]	G[3]	G[1]	G[1]	-	-	
VD[10]	G[2]	G[0]	G[0]	-	-	
VD[9]	G[1]	-	-	-	-	
VD[8]	G[0]	1	-	-	-	
VD[7]	B[7]	B[5]	B[4]	1	1	VEN_DATA[7]
VD[6]	B[6]	B[4]	B[3]	1	1	VEN_DATA[6]
VD[5]	B[5]	B[3]	B[2]	1	1	VEN_DATA[5]
VD[4]	B[4]	B[2]	B[1]	-	-	VEN_DATA[4]
VD[3]	B[3]	B[1]	B[0]	-	-	VEN_DATA[3]
VD[2]	B[2]	B[0]		-	-	VEN_DATA[2]
VD[1]	B[1]	-	-	-	-	VEN_DATA[1]
VD[0]	B[0]	-	-	-	-	VEN_DATA[0]

表 14-9 CPU I/F 数据管脚映射

	I80 CPU I/F (并行)										
	26BPP(565)	18BPl	P(666)	18BP	P(666)	24BPP(888)		18BPP(666)	26BPI	26BPP(565)	
Lx_DATA16	000	00	01	0	10	011		100	10)1	
		1st	2nd	1st	2nd	1st	2nd		1st	2nd	
VD[23]		-	-	-	-	-	-	-	-	-	
VD[22]		-	-	-	-	-	-	-	-	-	
VD[21]		-	-	-	-	-	-	-	-	-	
VD[20]		1	-	-	-	-	-	-	1	1	
VD[19]		1	-	-	-	-	-	-	1	1	
VD[18]		-	-	-	-	-	-	-	-	-	
VD[17]		-	-	-	-	-	-	R[5]	-	-	

VD[16]		-	-	-	-	-	-	R[4]	-	-
VD[15]	R[4]	R[5]	-	-	-	R[7]	B[7]	R[3]	-	-
VD[14]	R[3]	R[4]	-	-	-	R[6]	B[6]	R[2]	-	-
VD[13]	R[2]	R[3]	-	-	-	R[5]	B[5]	R[1]	-	-
VD[12]	R[1]	R[2]	-	-	-	R[4]	B[4]	R[0]	-	-
VD[11]	R[0]	R[1]	-	-	-	R[3]	B[3]	G[5]	-	-
VD[10]	G[5]	R[0]	-	-	1	R[2]	B[2]	G[4]	-	1
VD[9]	G[4]	G[5]	-	-	1	R[1]	B[1]	G[3]	-	1
VD[8]	G[3]	G[4]	-	R[5]	G[2]	R[0]	B[0]	G[2]	ı	ı
VD[7]	G[2]	G[3]	-	R[4]	G[1]	G[7]	-	G[1]	R[4]	G[2]
VD[6]	G[1]	G[2]	-	R[3]	G[0]	G[6]	-	G[0]	R[3]	G[1]
VD[5]	G[0]	G[1]	-	R[2]	B[5]	G[5]	-	B[5]	R[2]	G[0]
VD[4]	B[4]	G[0]	-	R[1]	B[4]	G[4]	-	B[4]	R[1]	B[4]
VD[3]	B[3]	B[5]	-	R[0]	B[3]	G[3]	-	B[3]	R[0]	B[3]
VD[2]	B[2]	B[4]	-	G[5]	B[2]	G[2]	-	B[2]	G[5]	B[2]
VD[1]	B[1]	B[3]	B[1]	G[4]	B[1]	G[1]	-	B[1]	G[4]	B[1]
VD[0]	B[0]	B[2]	B[0]	G[3]	B[0]	G[0]	-	B[0]	G[3]	B[0]

14.2.14. LCD 常规/BY-PASS 模式选择

外部调制解调器或 MCU 可以穿过 BY_PASS 访问系统接口 LCD 板块。复位以后,LCD 控制器初始输出路径是 BY-PASS,如图 14-12 所示。为了在常规显示模式下运行,SEL_BYPASS[3]值@ 0x7410800C 必须设置为'0',设置为'1'的时候为 BY-PASS 模式。

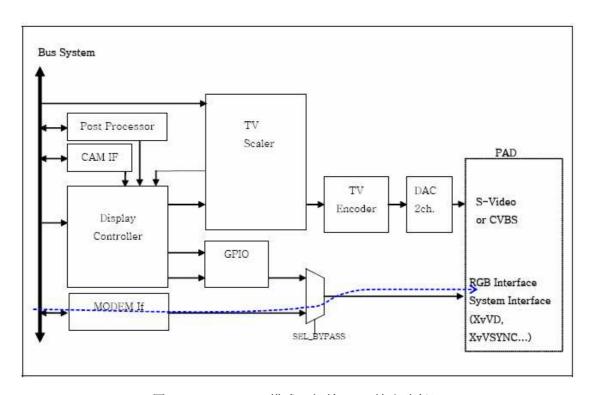


图 14-12 By-Pass 模式(初始 LCD 输出路径)

14.3 编程模型

14.2.1. 概述

用下面所诉寄存器配置显示控制器:

- (1) MOFPCON:SEL_BYPASS[3] value@0x7410800C 必须设置为'0'.
- (2) SPCON:LCD_SEL[1:0]value@0x74F0081A0 必须设置为'00',使用主机 I/F 类型,或者设置为'01'使用 RGB I/F 类型。
- (3) VIDCON0:配置视频输出格式和显示使能/禁止。
- (4) VIDCON1:RGB I/F 控制信号。
- (5) I80IFCONx: i80 系统 I/F 控制信号。
- (6) ITUIFCON0:ITU(BT.601)接口控制