		0=不 能重复突发写入	
		1=如果设置 1,突发写入被认为是重复突发写如	
HOSTIF_RESET	[2]	HOST I/F 复位	0
		0=用软复位信号进行复位	
		1=必须通过软件声明	
Reserved	[1]	必须固定设置为 00	0
READ_WRITE	[0]	读或写	0
		0=写操作	
		1=读操作	

3. 中断使能寄存器(INTE)

BSEL[3:0]=0000, MP_A[1:0]=01, 读/写, 复位值=0x2000

领域	位	描述	初始状态
WFIFO-THRES	[15:8]	WFIF0 阈值的空元素	0x20
		这个值定义了阈值的部分空虚。如,如果 WFIFO-THRES	
		值为 8, ATAT[7]变成 1, WFIF0 中 16 个或更多的元素	
		是空的。	
WFIFO-PEMPTY	[7]	WFIFO 部分控制中断使能,当 INTE[7]=1, STAT[7]=1	0
		时,发生中断。	
Reserved	[6:2]	_	0
WFIF0	[1]	WFIF0 中断使能	0
		当 INTE[1]=1, STAT[1]=1 时发生中断	
RFIF0	[0]	RFIFO 中断使能	0
		当 INTE[0]=1, STAT[0]=1 时发生中断	

4.状态寄存器(STAT)

BSEL[3:0]=0000, MP_A[1:0]=10, 读/写, 复位值=0x90A2

领域	位	描述	初始状态
WRITABLE_CNT	[15:8]	WFIF0 内写入字的数量: 只读	0x90

		这个领域可以在没有检测 WFIFO 容量的情况下显示出	
		可以向 WFIF0 内写入多少字, 如果是 0x08 领域, 主机	
		可以写入 16 个字。	
		注意: 复位值是 0x90, 在不溢出的情况下可以写入 288	
		个字。实际上,因为 WFIFO 内包含地址,可接受的最	
		大数据是 256 个字节。	
WFIFO-PEMPTY	[7]	WFIF0 部分空值标志,当空值元素数量大于或等于阈	0
		值时,标志变为 1.	
Reserved	[6:2]	-	0
WFIF0	[1]	WFIF0 部分空值标志:	1
		当突发写入变为空,最大突发写入能力有效的瞬间,	
		标志变为 1. 只要 WFIFO 有一个单个写入,标志将复位	
RFIF0	[0]	RFIF0 读标志	0
		当突发读准备读取数据时,标志变为1。HOST 读取	
		DATAH 将复位标志。	

5.中断使能 1 寄存器 (INTE1)

BSEL[3:0]=0000, MP_A[1:0]=10, 读/写, 复位值=0x0000

领域	位	描述	初始状态
Reserved	[15:2]		0
IMB_EMPTY	[1]	IMB 空值中断使能	0
		当 INTE[1]=1, STAT[1]=1 时发生中断	
OMB_FILLED	[0]	OMB 领域中断使能	0
		当 INTE[0]=1, STAT[0]=1 时发生中断	

6.状态 1 寄存器(STAT1)

BSEL[3:0]=0001, MP_A[1:0]=10, 读/写, 复位值=0x0002

领域	位	描述	初始状态
Reserved	[15:2]		0

IMB_EMPTY	[1]	IMB 空值标志:	1
		标示与 IMB_FILLED 值相反	
OMB_FILLED	[0]	OMB 领域标志:	0
		当通过 SFR 访问写入输出信箱时,标志被设置。当写	
		入 HIGH 值时,标志被清除	

7.输入信箱低位寄存器(IMBL)

BSEL[3:0]=0010, MP_A[1:0]=00, 读/写, 复位值=0x0000

领域	位	描述	初始状态
IMBL	[15:0]	输入信箱寄存器的低 16 位	0x0000
		HOST 向 IMBL 内写入 16 位数据	

8..输入信箱高位寄存器(IMBH)

BSEL[3:0]=0010, MP_A[1:0]=00, 读/写, 复位值=0x0000

领域	位	描述	初始状态
IMBL	[15:0]	输入信箱寄存器的高 16 位	0x0000
		HOST 向 IMBH 内写入 16 位数据后,为了告知 32 位 IMB	
		包含新值,HOST I/F 需要声明 IMB 标志。当 IMB 通过	
		软件读取时, IMB 标志自动清除。	

9.输出信箱低位寄存器(OMBL)

BSEL[3:0]=0011, MP_A[1:0]=00, 读/写, 复位值=0x0000

领域	位	描述	初始状态
OMBL	[15:0]	输入信箱寄存器的低 16 位	0x0000
		HOST 读取 32 位 OMB 内的低 16 位数据	

10.输出信箱高位寄存器(OMBH)

BSEL[3:0]=0011, MP_A[1:0]=01, 读/写, 复位值=0x0000

领域	位	描述	初始状态
----	---	----	------

OMBH	[15:0]	输出信箱寄存器的高 16 位。	0x0000
		当 HOST 读取 32 位 OMB 内的高 16 位数据时, STAT1[0]	
		自动清除。	

11.主机接口数据低位寄存器(HDATAL)

BSEL[3:0]=1000, MP_A[1:0]=01, 读/写, 复位值=未定义

领域	位	描述	初始状态
DATAL	[15:0]	数据寄存器	_

12.主机接口数据高位寄存器(HDATAH)

BSEL[3:0]=1000, MP_A[1:0]=01, 读/写, 复位值=未定义

领域	位	描述	初始状态
DATAH	[15:0]	数据寄存器	-

13.系统控制寄存器(SYS_CTRL)

BSEL[3:0]=1011, MP_A[1:0]=00, 读/写, 复位值=0x0000

领域	位	描述	初始状态
Reserved	[15:1]	数据寄存器	0
BOOTDONE	[0]	Boot done for Modem Booting	0
		当此位设置为高电平时,系统控制器判断 Boot done	
		信号。S3C6410(AP)开始 Boot 操作。	
		完成 Modem boot 以后,此位必须清零。	

14.板块选择寄存器(BSEL)

BSEL[3:0]=1011, MP_A[1:0]=00, 读/写, 复位值=0x0000

领域	位	描述	初始状态
Reserved	[15:4]		0x0000
BSEL	[3:0]	板块选择	0000
		0000=板块0内的一个(协议)寄存器被选择	

	0001=板块1内的一个(协议)寄存器被选择	
	1111=板块 15 内的一个(协议)寄存器被选择	

24.5 特殊功能寄存器描述

基本地址: 0x7400_0000

寄存器	补偿区	读/写	描述	复位值
HOSTIFC_CTRL	0x000	读/写	HOST I/F 控制寄存器	0x20FF_0100
Reserved	0x004	读/写	保留	0x0000_0006
HOSTIFC_TMP	0x008	读/写	HOST I/F 临时寄存器	0x0000_0000
Reserved	0x00C	-	保留	0x0000_0000
HOSTIFC_IMB	0x010	读	HOST I/F IMB 寄存器	0x0000_0000
HOSTIFC_OMB	0x014	读/写	HOST I/F OMB 寄存器	0x0000_0000
HOSTIFC_MR_STAT	0x020	读	HOST I/F 状态镜像寄存器	0x0000_9A02
HOSTIFC_MR_STAT1	0x024	读	HOST I/F状态镜像1寄存器	0x0000_0002
HOSTIFC_STAT2	0x028	读/写	HOST I/F 状态 2 寄存器	0x0001_0000
Reserved	0x02C	-	保留	0x0000_0000
HOSTIFC_MR_INTE	0x030	读	HOST I/F 中断使能寄存器	0x0000_2000
HOSTIFC_MR_	0x034	读	HOST I/F中断使能1寄存器	0x0000_0000
INTE1				
HOSTIFC_INTE 2	0x038	读/写	HOST I/F中断使能2寄存器	0x0001_0000
Reserved	0x03C	-	保留	0x0000_0000

1.HOST I/F 控制寄存器(HOSTIFC_CTRL)

寄存器	地址	读/写	描述	复位值
HOSTIFC_CTRL	0x74000000	读/写	HOST I/F 控制寄存器	0x20FF0100

HOSTIFC_CTRL	位	描述	初始状态
Reserved	[31:30]	-	0
INV_INIR	[29]	INTR 的极性反转	1
		0: INTR 高电平有效,当发生中断时 INTR 变成高电平	
		1: INTR 低电平有效, 当发生中断时 INTR 变成低电平	
		注: HOST I/F 模块的"INV_INTR"和 MODEM I/F 模块的	
		"INT2M_LEVEL"极性必须相同	
Reserved	[28:24]	-	0x0
Reserved	[23:16]	-	0xFF
Reserved	[15:9]	-	0x0
Reserved	[8:0]	-	0x100

2.HOST I/F 临时寄存器(HOSTIFC_TMP)

寄存器	地址	读/写	描述	复位值
HOSTIFC_TMP	0x74000008	读/写	HOST I/F 临时寄存器	0x000000

HOSTIFC_TMP	位	描述	初始状态
DATA	[31:0]	临时寄存器	0x0000_0000
		临时寄存器可以用来设计版本或者用来验证	

3.HOST I/F IMB 寄存器(HOSTIFC_IMB)

寄存器	地址	读/写	描述	复位值
HOSTIFC_IMB	0x74000010	读	HOST I/F IMB 寄存器	0x00000000

HOSTIFC_IMB	位	描述	初始状态
IMB	[31:0]	32 位输入信箱 Shadow 寄存器	0x0000_0000

4. HOST I/F OMB 寄存器(HOSTIFC_OMB)

寄存器	地址	读/写	描述	复位值
HOSTIFC_OMB	0x74000014	读	HOST I/F OMB 寄存器	0x00000000

HOSTIFC_OMB	位	描述	初始状态
OMB	[31:0]	32 位输出信箱寄存器	0x0000_0000

5. HOST I/F 状态镜像寄存器 (HOSTIFC_MR_STAT)

寄存器	地址	读/写	描述	复位值
HOSTIFC_MR_STAT	0x74000020	读	HOST I/F 状态镜像寄存器	0x000090A2

HOSTIFC_MR_STAT	位	描述	初始状态
Reserved	[31:16]	_	0x0000
STAT	[15:0]	STAT[15:0]镜像(协议)寄存器	0x90A2

6. HOST I/F 状态 1 镜像寄存器 (HOSTIFC_MR_STAT1)

寄存器	地址	读/写	描述	复位值
HOSTIFC_MR_STAT1	0x74000024	读	HOST I/F 状态 1 镜像寄存器	0x000090A2

HOSTIFC_MR_STAT1	位	描述	初始状态
Reserved	[31:16]	-	0x0000
STAT1	[15:0]	STAT1[15:0]镜像(协议)寄存器	0x0002

7. HOST I/F 状态 2 寄存器(HOSTIFC_MR_STAT2)

寄存器	地址	读/写	描述	复位值
HOSTIFC_STAT2	0x74000028	读	HOST I/F 状态 2 寄存器	0x000090A2

HOSTIFC_STAT2	位	描述	初始状态
Reserved	[31:20]	-	0x000
Reserved	[19]	-	0
RBURST_DONE	[18]	重复突发写操作标志	0
		当进行重复突发写操作时,将设置此标志。写入 HIGH	
		值时,将清除该标志。	
IMB_FILLED	[17]	IMB 领域标志	0
		通过调制器写入输入信箱时,将设置此标志。写入	
		HIGH 值时,将清除该标志。	
OMB-EMPTY	[16]	OMB 空值标志	1
		此标志是 OMB_FILLED 的反相值。	
Reserved	[15:8]	保留	0x00
RX_FIFO_OVER_RUN	[7]	HOST I/F 内的 当地 RX FIFO 过度运行标志	0
RX_FIFO_UNDER_RUN	[6]	HOST I/F 内的 当地 RX FIFO 欠载运行标志	0
TX_FIFO_OVER_RUN	[5]	HOST I/F 内的 当地 TX FIFO 过度运行标志	0
TX_FIFO_UNDER_RUN	[4]	HOST I/F 内的 当地 TX FIFO 欠载运行标志	0
Reserved	[3]	-	0
Reserved	[2]	-	0
Reserved	[1]	-	0
Reserved	[0]	-	0

8 HOST I/F 中断使能镜像寄存器(HOSTIFC_MR_INTE)

寄存器	地址	读/写	描述	复位值
HOSTIFC_MR_INTE	0x74000030	读	HOST I/F 中断使能镜像寄存器	0x00002000

HOSTIFC_MR_INTE	位	描述	初始状态
Reserved	[31:16]	-	0x0000
INTE	[15:0]	INTE[15:0]镜像(协议)寄存器	0x2000

9. HOST I/F 中断使能 1 镜像寄存器(HOSTIFC_MR_INTE1)

寄存器	地址	读/写	描述	复位值
HOSTIFC_MR_INTE1	0x74000034	读	HOST I/F 中断使能 1 镜像寄存器	0x00000000

HOSTIFC_MR_INTE1	位	描述	初始状态
Reserved	[31:16]	-	0x0000
INTE1	[15:0]	INTE1[15:0]镜像(协议)寄存器	0x0000

10.HOST I/F 中断使能 2 镜像寄存器 (HOSTIFC _INTE2)

寄存器	地址	读/写	描述	复位值
HOSTIFC_I NTE2	0x74000034	读	HOST I/F 中断使能 1 镜像寄存器	0x00000000

HOSTIFC_INTE2	位	描述	初始状态
Reserved	[31:16]	-	0x0000
INTE2	[15:0]	INTE2[15:0]镜像(协议)寄存器	0x0000

25 USB 主机控制器

本节主要介绍在 S3C6410 RISC 微处理器上,通用串行总线主机控制器(USB)的执行。

25.1 USB 主机控制器概述

S3C6410 支持 2 端口 USB 主机接口如下:

- 兼容 OHCI Rev1.0。
- 兼容 USB Rev1.1。
- 两个向下传输端口。
- 支持低速和全速 USB 设备。

其 USB 主机控制器结构框图,如图 25-1 所示。

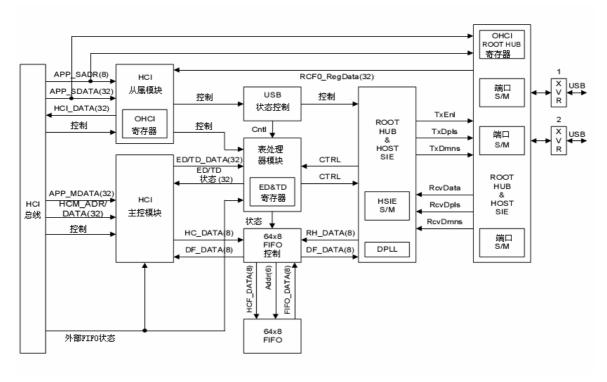


图 25-1 USB 主机控制器结构框图