一个三角数据,顶点的数必须是 3 的倍数。如果(3n+1)订单被发送,中断单元会等待 FGHI_PIPESTATE 变为 0,在这种情况下,3D 图形的不会发生中断,因为 FGHI_PIPESTATE 的图元引擎的值是 1,将等待另两个顶点。

如果用这种方式使用顶点缓冲区,建议不使用顶点缓存。因为所有的 DWORDS 只用一次,顶点缓存没有 Hit-Case。

42.3.9.顶点缓存控制

FGHI_CONTROL 内的 EnVE 和 NumOutAttrib 领域控制着顶点缓存工作的方法。如果 EnVC 区域为 0,那么顶点缓存将不可用。NunOutAttrib 区域储存着顶点着色器输出属性的数量。由 NunOutAttrib 决定的输出属性的数量被转换到图元引擎内。

注意当通过 CPU 写入 FGHI_CONTROL 时,后顶点缓存将自动清零(初始化)。当发送一个几何数据的一串索引时,将发送另一个不同的几何数据。这种情况下,先前几何数据的索引保存在顶点缓存内,当新的几何数据索引发送时可以被隐藏。因此,当用索引模式发送多个几何数据时,必须清除几何数据之间的顶点缓存。当通过 CPU 写入 FGHI_CONTROL 时,顶点缓存自动清除。尽管 FGHI_CONTROL 值不改变,FGHI_CONTROL 可以用相同的值写入来清除顶点缓存的内容。

42.3.10.主机接口特殊寄存器

42.3.10.1 主机接口的自由 DWORD 空间寄存器(FGHI_DWSPACE)

寄存器	地址	读/写	描述	复位值
FGHI_DWSPACE	0x72008000	读	HI 内主机 FIFO 的空插槽数量	0x00000000

FES	位	描述	初始状态
VAL	[31:0]	空插槽数量	0x0

42.3.10.2 主机 FIFO 进入端口寄存器(FGHI_DWENTRY)

寄存器	地址	读/写	描述	复位值
FGHI_DWENTRY	0x7200C000	写	HI 内主机 FIFO 的输入端口。	-
	~		可以突发写入。	
	0x7200DFFF		写入 0x0000C0000 ~ 0x000DFF 的 DWORD 被储存在	
			主机接口内的主机 FIFO 内。	

FGHI_DWENTRY	位	描述	初始状态
DATA	[31:0]	顶点,索引的数目和几何数据被转	-
		换到此寄存器内	

42.3.10.3 主机接口控制寄存器(FGHI_CONTROL)

寄存器	地址	读/写	描述	复位值
FGHI_CONTROL	0x72008008	读/写	主机接口控制寄存器。注意: 当	0x00010000
			FGHI_CONGROL 被写入时,VC 自	
			动初始化	

FGHI_CONTROL	位	描述	初始状态
EnVB	[31]	使能项点缓冲区	0b
Reserved	[30:26]	保留	0
IdxType	[25:24]	转换的索引类型	00b
		00b=无符号整数	
		01b=无符号短整数	
		10b=保留	

		11b=无符号字节	
Reserved	[23:17]	保留	0
AutoInc	[16]	自动增加模式	1b
Reserved	[15:5]	保留	0
EnVC	[4]	使能项点缓存	0b
NumOutAttrib	[3:0]	顶点着色器输出属性的数量	0000b
		当 point-sprite 被使用时,这个数必须是(着色器输出的数目+1)。	

42.3.10.4 索引 补偿寄存器 (FGHI_IDXOFFSET)

寄存器	地址	读/写	描述	复位值
FGHI_IDXOFFSE	0x7200800C	读/写	索引补偿寄存器	0x00000001

FGHI_IDXOFFSET	位	描述	初始状态
VAL	[31:0]	索引补偿值	0x00000001
		当索引自动增加时, VAS 增加索引。CPU 内第一个被转换的索引被应用。	
		因此,使用的索引是:索引,索引+VAL,索引+2*VAL等等	
		当 CPU 转换的索引被使用,VAL 正道每一个转换的索引。如,索引 0,索	
		引 1, 索引 2 等从 CPU 发送, 那么在 HI 内使用规定索引是: 所以 0+VAL,	
		索引 1+VAL, 索引 2+VAL 等等。	

42.3.10.5 顶点缓冲区地址寄存器(FGHI_VBADDR)

寄存器	地址	读/写	描述	复位值
FGHI_VBADDR	0x72008010	读/写	写: 设置目标地址寄存器	0x00000000
			读: 地址被用来读取下一个向 VB 转换的几何数据。这个值可	
			以用来计算多少个数据被转换。	
			当向顶点缓冲区写入四个 DWORD 时,FGHI_VBADDR 自动更新。	

FES	位	描述	初始状态
VAL	[31:0]	复制几何数据属性的开始地址	0x0

42.3.10.6 顶点缓冲区进入端口地址(FGHI_VBDATA)

寄存器	地址	读/写	描述	复位值
FGHI_VBDATA	0x7200E000	读/写	写: 用于向 VB 内写几何数据	0x00000000
	~		可以突发写入。	
	0x7200FFFF		写入 0x0000E000~0x0000FFFF 内的 DWORD 储存	
			在顶点缓冲区内	
			读:读取最后写入 FGHI_VBDATA 内的数据	

VBD	位	描述	初始状态
DATA	[31:0]	顶点缓存区的数据输入端口。这个寄存器的写入数据位4的倍数。开始	0x0
		地址自动增加。	

42.3.10.7 属性控制寄存器(FGHI_ATTRIB0~FGHI_ATTRIB9)

如果顶点数据类型为字节型,无符号字节型,归一字节,或归一无符号字节型,CPU 向主机接口转换的 DWORD 必须包括四个组成部分。如图 42-7 所示的例子 DWORD,未使用的 8 位数据被忽略了。

图 42-7 DWORD 结构

在上面的例子中, $(8 \odot x, 8 \odot y, 8 \odot w)$ 属性可用一个 DWORD 转换。

如果顶点数据类型为短整型,无符号短整型,归一短整型,或归一无符号短整型,一个 DWORD 内有两个属性。因此(16 位 x, 16 位 y, 16 位 z, 16 位 w)需要两个 DWORD,如图 42-8 所示。

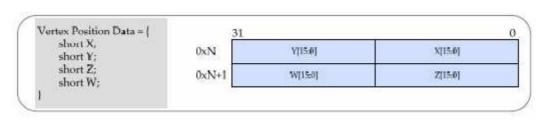


图 42-8 DWORD 结构

注意,当 DWORD 储存在顶点缓冲区内时,上面的规则同样应用。

寄存器	地址	读/写	描述	复位值
FGHI_ATTRIBO	0x72008040	读/写	输入属性 0 控制寄存器	0x000000E4
FGHI_ATTRIB1	0x72008044	读/写	输入属性1控制寄存器	0x000000E4
FGHI_ATTRIB2	0x72008048	读/写	输入属性 2 控制寄存器	0x000000E4
FGHI_ATTRIB3	0x7200804C	读/写	输入属性3控制寄存器	0x000000E4
FGHI_ATTRIB4	0x72008050	读/写	输入属性 4 控制寄存器	0x000000E4
FGHI_ATTRIB5	0x72008054	读/写	输入属性 5 控制寄存器	0x000000E4
FGHI_ATTRIB6	0x72008058	读/写	输入属性 6 控制寄存器	0x000000E4
FGHI_ATTRIB7	0x7200805C	读/写	输入属性7控制寄存器	0x000000E4
FGHI_ATTRIB8	0x72008060	读/写	输入属性 8 控制寄存器	0x000000E4
FGHI_ATTRIB9	0x72008064	读/写	输入属性 9 控制寄存器	0x000000E4

FGHI_ATTRIBn	位		描述		初始状态		
LastAttr	[31]	0b=指明 ATTRIB	n 被使用		1b		
		1b=指明 ATTRIB	n 是最后的属性				
		设置以后,所有	的 last 值为 0,意思是	默认使用一个属性。			
		如 : I	如 : HGHI_ATTRIBO[31]=0, HGHI_ATTRIB1[31]=0				
		HGHI_ATTRIB2[3	HGHI_ATTRIB2[31]=1 HGHI_ATTRIB3~9[31]=不考虑				
		HGHI_ATTRIB0~2					
Reserved	[30:16]	保留	保留				
Dt	[15:12]	属性n的每个组	0				
		位	数据类型	范围			
		0000	字节	-127 [~] 128			

		0001	端整型	-23768 [~] 32767				
		0010	整型	-2147483648~2147483647				
		0011	固定的	-32768 [~] 32768				
		0100	无符号字节	0 [~] 255				
		0101	无符号短整型	0 [~] 65535				
		0110	无符号整型	$0^{\sim}4294967295$				
		1000	浮点型	IEEE 754 单精度				
		1001	归一字节	-1.0f~1.0f				
		1010	归一短整型	-1.0f~1.0f				
		1011	归一固定	$0.0 \mathrm{f}^{\sim} 1.0 \mathrm{f}$				
		1100	归一无符号字节	0.0f ¹ .0f				
		1101	归一无符号短整	型 0.0f~1.0f				
		1110	归一无符号整型	0.0f [~] 1.0f				
		1111	半浮点	s/5/10 格式				
		当浮点或半	浮点数据类型使用时,	必须不能 NaN 或无穷数使用				
Reserved	[11:10]	保留			0			
NunComp	[9:8]	组成部分的	数量		00b			
		00b=只有一	个组成部分被转换					
		(a, b, c	(a, b, c, d) = $(1^{st}, 0, 0, 1)$					
		01b=两个组	01b=两个组成部分被转换					
		(a, b, c	$(2, d) = (1^{st}, 2^{nd}, 0, 1)$					
		10b=三个组	[成部分被转换					
		(a, b, c	$(2, d) = (1^{st}, 2^{nd}, 3^{rd}, 1)$)				
		11b=四个组	l成部分被转换					
		(a, b, c	$(2, d) = (1^{st}, 2^{nd}, 3^{rd}, 4)$	$(\mathbf{I}^{ ext{th}})$				
		(a, b, c	, d) 通常用来选择(X,	Y, Z, W,)				
SrcW	[7:6]	选择₩组成	部分		11b			
		00b=选择 a	组成部分作为 W					
		01b=选择 b	组成部分作为 W					

		10b=选择 c 组成部分作为 ₩	
		11b=选择 d 组成部分作为 ₩	
		注意: a~d 在 NumComp 区域定义	
SrcZ	[5:4]	选择 2 组成部分	10b
		00b=选择 a 组成部分作为 Z	
		01b=选择 b 组成部分作为 Z	
		10b=选择 c 组成部分作为 Z	
		11b=选择 d 组成部分作为 Z	
		注意:a~d 在 NumComp 区域定义	
SrcY	[3:2]	选择Y组成部分	01b
		00b=选择 a 组成部分作为 Y	
		01b=选择 b 组成部分作为 Y	
		10b=选择 c 组成部分作为 Y	
		11b=选择 d 组成部分作为 Y	
		注意:a~d 在 NumComp 区域定义	
SrcX	[1:0]	选择X组成部分	00b
		00b=选择 a 组成部分作为 X	
		01b=选择 b 组成部分作为 X	
		10b=选择 c 组成部分作为 X	
		11b=选择 d 组成部分作为 X	
		注意:a~d 在 NumComp 区域定义	

42.3.10.顶点缓冲区控制寄存器 (FGHI_ATTRIB0_VBCTRL~FGHI_ATTRIB9_VBCTRL)

FGHI_ATTRIBn_VBCTRL.Stride 代表顶点缓冲区内下一个输入属性的字节数目。

FGHI_ATTRIBn_VBCTRL.num 代表在顶点缓冲区内有多少个输入属性。

寄存器	地址	读/写	描述	复位值
FGHI_ATTRIBO_VBCTRL	0x72008080	读/写	输入属性 0 的顶点缓冲区控制寄存器	0x00000000

FGHI_ATTRIB1_VBCTRL	0x72008084	读/写	输入属性1的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB2_VBCTRL	0x72008088	读/写	输入属性 2 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB3_VBCTRL	0x7200808C	读/写	输入属性 3 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB4_VBCTRL	0x72008090	读/写	输入属性 4 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB5_VBCTRL	0x72008094	读/写	输入属性 5 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB6_VBCTRL	0x72008098	读/写	输入属性 6 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB7_VBCTRL	0x7200809C	读/写	输入属性7的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB8_VBCTRL	0x720080A0	读/写	输入属性 8 的顶点缓冲区控制寄存器	0x00000000
FGHI_ATTRIB9_VBCTRL	0x720080A4	读/写	输入属性 9 的顶点缓冲区控制寄存器	0x00000000

FGHI_ATTRIBn_VBCTRL	位	描述	初始状态
Stride	[31:24]	在字节内的下一属性位置	0xb
Reserved	[24:16]	保留	0
Range	[15:0]	顶点缓冲区内的所有的有效索引范围。	0x0
		此值用来指明索引的几何数据是否在顶点缓冲区内	

42.3.10.9 顶点缓冲区基础地址寄存器 (FGHI_ATTR0_VBBASE~FGH-_ATTR9_VBBASE)

寄存器	地址	读/写	描述	复位值
FGHI_ATTRIBO_VBBASE	0x720080C0	读/写	输入属性 0 的顶点缓冲区基础地址寄存器	0x00000000
FGHI_ATTRIB1_VBBASE	0x720080C4	读/写	输入属性 1 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB2_VBBASE	0x720080C8	读/写	输入属性 2 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB3_VBBASE	0x720080CC	读/写	输入属性 3 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB4_VBBASE	0x720080D0	读/写	输入属性 4 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB5_VBBASE	0x720080D4	读/写	输入属性 5 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB6_VBBASE	0x720080D8	读/写	输入属性 6 的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB7_VBBASE	0x720080DC	读/写	输入属性7的顶点缓冲区基础地址控制寄存器	0x00000000

FGHI_ATTRIB8_VBBASE	0x720080E0	读/写	输入属性8的顶点缓冲区基础地址控制寄存器	0x00000000
FGHI_ATTRIB9_VBBASE	0x720080E4	读/写	输入属性 9 的顶点缓冲区基础地址控制寄存器	0x00000000

FGHI_ATTRIBn_VBCTRL	位	描述	初始状态
Reserved	[31:16]	保留	0
Addr	[15:0]	顶点缓冲区内的输入属性的基础地址	0x0

42.4 顶点着色器

1.概述

顶点着色器是 3D 图形特殊处理器,可以处理顶点,替代传统的固定功能图形管道。顶点着色器可以使用户定义特殊功能。顶点着色器支持着色器模版 3.0,包括顶点纹理性能和不同的流量控制。

2. 最初的操作

顶点着色器程序由指令序列,算数运算的常量浮点值,流量控制地整数值和布尔值组成。这些值应该 在执行程序之前储存在寄存器内或存储器内。当主机写入所有的顶点属性时顶点着色器自动开始运行。

3. 顶点着色器特殊寄存器

着色器指令和常量值在顶点着色器操作中储存在特殊寄存器内。这些寄存器可以通过主机接口更新。

4.指令存储器

指令存储器有512个插槽,每个插槽由4个字组成。

寄存器	地址	读/写	描述	复位值
FGVS_INSTMEM	0x72010000	读/写	顶点着色器的指令存储器	0xX
	~0x72011FFF			

5. 常量浮点寄存器

常量浮点数可以储存在常量浮点寄存器内,用于程序中的计算操作。常量浮点寄存器有 256 个入口。每个入口由 4 个通道 x, y, z, w 组成。每个通道是 32 位字,屏息有 IEEE 单定居浮点格式。

寄存器	地址	读/写	描述	复位值
FGVS_CFLOAT	0x72014000	读/写	顶点着色器的常量浮点寄存器	
	~0x72014FFF			

字 3(0x72014XXC)

寄存器	位	描述	复位值
W	[127:96]	恒量浮点W组成部分值	0xXXXXXXXX

字 2 (0x72014XX8)

寄存器	位	描述	复位值
Z	[95:64]	恒量浮点 Z 组成部分值	0xXXXXXXXX

字1 (0x72014XX4)

寄存器	位	描述	复位值
Y	[63:32]	恒量浮点Y组成部分值	0xXXXXXXXX

字 0 (0x72014XX0)

寄存器	位	描述	复位值
X	[31:0]	恒量浮点X组成部分值	0xXXXXXXXX

IEEE 单精度浮点格式

	位	描述	复位值
S	[31]	Sign 位	XXXXXXXXh
E	[30:23]	偏向指数	XXh
F	[22:0]	分数	

6.常量整数寄存器

常量整数值存储在常量整数寄存器内。常量整数值只用于流量控制,是循环计数的迭代或相关地址的索引。常量整数寄存器有16个入口,每个入口由4个8位无符号整数值的通道组成。