

Cadence/OrCAD PSpice 16.6

功能四——Multi Core

16.6最大的突破就是支持 CPU 的多核工作,提高运行速度。通过引入多核模拟支持 系统,包括大型设计和 MOSFETs 和 BJTs 等复杂模型支配的设计,取得了显著的性能提高。 Spice 仿真器一直是模拟电路仿真工具的最好选择,各 EDA 供应商一直致力于通过创新技术 改进自己工具的速度和精度,使它们适合于多核处理器和多 CPU 系统的运行。在原理图仿真 软件中 Synopsys 公司在 2008 年推出 HSpice 仿真器时就宣布了对其 HSpice 核心引擎技 术的增强以及多线程的能力,有了多线程版,电路设计设运行 HSpice 版图后仿真的速度比 单核处理器快两倍,在四核处理器上更可以快达五倍。这是 HSpice 一直优越于 PSpice 软 件的一个优势。但是由于 HSpice 在绘制原理图上是采用电路描述语句进行描述,使用的客 户群体远没有 PSpice 广泛。Cadence 公司在软件提速上也一直在做努力,终于在 16.6 版 本实现了支持多核处理器,真正实现了仿真的提速。

首先来感受一下新版本提速的表现。以运行一个.cir 的文件为例来说明。.cir 文件内容如 图 10 所示。

nulticore.cir - 记事本 文件 (F) 编辑 (E) 格式 (Q) 查看 (Y) 帮助(H) multicore test ^ .OPTIONS THREADS=1 .lib multicoretest.lib .TRAN 1e-09 6.5e-06 .options PSEUDOTRAN X1 1 2 mytest

cādence[°]

图 10 检验多核运行的小例子

1、打开一个命令输入窗口,步骤:开始菜单,选择运行,在运行窗口中输入: cmd,就可以打开 dos 命令窗口。

2、将路径标识符改变到例子所在的文件,然后运行下面的命令:

psp_cmd multicore.cir,运行后得到如图 10 所示的结果。说明运行时间为 106.92 秒。

**** PSpice 16.6.0 (April 2011) ****	
multicore test Desdiar and sharking singuit	
Reading and checking circuit Circuit read in and checked, no errors	
Calculating bias point for Transient Anal	ysis
Bias point calculated	
Transient Analysis Transient Analysis finished	
Total job time (using Solver 1) =	106.92
Total Job Cliff (doing borter 17	100.72
Simulation complete.	

图 10 单核运行的结果

3、打开图 10 的界面,将. OPTIONS THREADS=1 这一行删除,表示按照系统实际的 线程数工作。保存后,重新运行,得到图 11 所示结果。说明运行时间为 78.02 秒, 相比单核运行,速度提升了 27%。当然这个速度取决于所用电脑的配置。配制越高, 运行速度越快。

图 11 多核运行结果

在新版本中默认设置就是支持多核运行的,如果需要设置和修改该选项,可以在 仿真设置窗口的 Option 中进行设置,如图 12 所示。THREADS=1 表示单线程仿真, THREADS=0 表示使用默认线程计算,默认线程的数量决定于使用设备的 CPU 核心数和

<u>cādence</u>°

CHANNEL PARTNER

所安装的软件的许可证(license)。线程数一般小于等于 CPU 核心数的一半,而常规的 PSpice 许可证最大可使用的线程数是 4 个。

eneral Analysis	Configuration Files Options Date	Collecti	on Prob	e Window
Category				(.OPTIO
Analog Simulation	Relative accuracy of V's and I's:	0.001		(RELTO
Gate-level Simula Output file	Best accuracy of voltages:	1.0u	volts	(VNTO
	Best accuracy of currents:	1.0p	amps	(ABSTO
	Best accuracy of charges:	0.01p	coulombs	(CHGTO
	Minimum conductance for any branch	: 1.0E-12	1/ohm	(GMII
	DC and bias "blind" iteration limit:	150		(ITL
	DC and bias "best guess" iteration lim	it: 20		(ITL
	<u>I</u> ransient time point iteration limit:	10		(ITL
	Default <u>n</u> ominal temperature:	27.0	°C	(TNO
	Number of Threads (Maximum is 2)	0		(THREAD:
	Advanced Convergence (ADVCONV			
	Use preordering to reduce matrix f	II-in.	()	PREORDER
	AutoConverge MOSEET Options	Advanc	ed Ontions	Reset

图 12 设置线程数的页面

功能五——Node LIMITs

PSpice 16.6 允许设置节点的极限值,用于解决数据的溢出问题。同样先通过运行一个.cir 文件(如图 13 所示)来说明该功能的作用。

图 13 设置节点极限值的例子

1、打开一个命令输入窗口,步骤:开始菜单,选择运行,在运行窗口中输入: cmd,就可以打开 dos 命令窗口。

2、将路径标识符改变到例子所在的文件,然后运行下面的命令:

psp_cmd tran.cir,运行后得到如图 14 所示的结果。结果表明出现数据溢出的错误。

cādence[°]

C:\limit>psp_cmd tran.cir **** PSpice 16.6.0 (April 2011) **** ** Using Limit Reading and checking circuit Circuit read in and checked, no errors Calculating bias point for Transient Analysis INTERNAL ERROR -- Overflow. Convert Run aborted Total job time (using Solver 1) = .33 An error occurred during simulation.

图 14 出现数据溢出错误的运行结果

3、去掉图 13 中: . OPTIONS LIMIT= 1e12 前面的 "*",去掉注释,这样就定义 了节点的极限值为 1×10¹²。重新再运行命令: psp_cmd tran.cir。得到图 15 所示的运 行结果。说明数据溢出的错误消除。

C:\limit>psp_cmd tran.cir
**** PSpice 16.6.0 (April 2011) ****
** Using Limit
Reading and checking circuit
Circuit read in and checked, no errors
Calculating bias point for Transient Analysis
Starting power supply stepping
Bias point calculated
Transient Analysis
Transient Analysis finished
Total job time (using Solver 1) = 7.80
Simulation complete.

图 15 数据溢出错误消除

所以说"LIMIT"值可以在仿真出现数据溢出错误或者出现不收敛错误时进行设置。设置的步骤

是: 先点击 , 打开 Edit Simulation Profile 页面,选择 Option 页,如图 16 所示。选择 advanced Options,得到图 17 所示的对话框。这个对话框就是 16.6 增加的用户设置的页面。上个例子中,如果是通过原理图绘制后进行仿真,那就可以将 LIMIT 项修改成: 1e12。确定后运行仿真就可以达到例子中的结果。

<u>cādence</u>°

CHANNEL PARTNER

eneral Analysis	Configuration Files	Uptions	Data C	ollectio	on Prob	e Window
Category						(.OPTIO
Analog Simulation Gate-level Simulation Output file	Relative <u>a</u> ccuracy	of V's and I's:		0.001		(RELTO
	Best accuracy of y	oltages:		1.0u	volts	(VNTO
	Best accuracy of o	c <u>u</u> rrents:		1.0p	amps	(ABSTO
	Best accuracy of o	charges:		0.01p	coulombs	(CHGTO
	Minimum conducta	ance for any <u>b</u>	ranch:	1.0E-12	1/ohm	(GMI
	DC and bias "blind	l'' jteration limi	t	150		(ITL
	DC and bias "best	guess" iterati	on <u>l</u> imit:	20		(ITL
	<u>T</u> ransient time poir	nt iteration limit	t:	10		(ITL
	Default <u>n</u> ominal te	mperature:		27.0	°C	(TNO
	Number of Thread	s (Maximum is	2)	0		(THREAD
	Advanced Cor	vergence				(ADVCON
	Use <u>p</u> reorderin	g to reduce m	atrix fill-ir			REORDE
		MOSEET OF	ntions	Advanc	ed Antions	Beset

图 16 任选项设置对话框

Advanced Analog Options		×
Total Transient iteration limit (0=infinity):	0	(ITL5)
Relative magnitude for matrix pivot:	1.0E-3	(PIVREL)
Absolute magnitude for matrix pivot:	1.0E-13	(PIVTOL)
Simulation algorithm:	default 🖌	(SOLVER)
Relative factor for minimum delta	1	(DMFACTOR)
No GMIN across current sources		(NOGMINI)
Worst Case Deviation	0	(WCDEVIATION)
Absolute Data <u>V</u> alue Limit	1e12	(LIMIT)
Enable Breakpoints for Dependent Sources		(BRKDEPSRC)

图 17 LIMIT 项设置

如果有关于 PSpice 软件使用等问题可联系:

科通数字技术公司

地址:上海市长宁区延安西路726号华敏、翰尊时代广场13层 H座

邮编: 200050

- 电话: 021-51696680
- 邮箱: shaoqinwu@comtech.com.cn