
DIGITAL FILTERS

6.a

SECTION 6

DIGITAL FILTERS

� Finite Impulse Response (FIR) Filters

� Infinite Impulse Response (IIR) Filters

� Multirate Filters

� Adaptive Filters

DIGITAL FILTERS

6.b

DIGITAL FILTERS

6.1

SECTION 6
DIGITAL FILTERS
Walt Kester

INTRODUCTION

Digital filtering is one of the most powerful tools of DSP. Apart from the obvious
advantages of virtually eliminating errors in the filter associated with passive
component fluctuations over time and temperature, op amp drift (active filters), etc.,
digital filters are capable of performance specifications that would, at best, be
extremely difficult, if not impossible, to achieve with an analog implementation. In
addition, the characteristics of a digital filter can be easily changed under software
control. Therefore, they are widely used in adaptive filtering applications in
communications such as echo cancellation in modems, noise cancellation, and
speech recognition.

The actual procedure for designing digital filters has the same fundamental
elements as that for analog filters. First, the desired filter responses are
characterized, and the filter parameters are then calculated. Characteristics such as
amplitude and phase response are derived in the same way. The key difference
between analog and digital filters is that instead of calculating resistor, capacitor,
and inductor values for an analog filter, coefficient values are calculated for a digital
filter. So for the digital filter, numbers replace the physical resistor and capacitor
components of the analog filter. These numbers reside in a memory as filter
coefficients and are used with the sampled data values from the ADC to perform the
filter calculations.

The real-time digital filter, because it is a discrete time function, works with
digitized data as opposed to a continuous waveform, and a new data point is
acquired each sampling period. Because of this discrete nature, data samples are
referenced as numbers such as sample 1, sample 2, sample 3, etc. Figure 6.1 shows
a low frequency signal containing higher frequency noise which must be filtered out.
This waveform must be digitized with an ADC to produce samples x(n). These data
values are fed to the digital filter, which in this case is a lowpass filter. The output
data samples, y(n), are used to reconstruct an analog waveform using a low glitch
DAC.

Digital filters, however, are not the answer to all signal processing filtering
requirements. In order to maintain real-time operation, the DSP processor must be
able to execute all the steps in the filter routine within one sampling clock period,
1/fs. A fast general purpose fixed-point DSP such as the ADSP-2189M at 75MIPS
can execute a complete filter tap multiply-accumulate instruction in 13.3ns. The
ADSP-2189M requires N+5 instructions for an N-tap filter. For a 100-tap filter, the
total execution time is approximately 1.4µs. This corresponds to a maximum
possible sampling frequency of 714kHz, thereby limiting the upper signal
bandwidth to a few hundred kHz.

DIGITAL FILTERS

6.2

Figure 6.1

However, it is possible to replace a general purpose DSP chip and design special
hardware digital filters which will operate at video-speed sampling rates. In other
cases, the speed limitations can be overcome by first storing the high speed ADC
data in a buffer memory. The buffer memory is then read at a rate which is
compatible with the speed of the DSP-based digital filter. In this manner, pseudo-
realtime operation can be maintained as in a radar system, where signal processing
is typically done on bursts of data collected after each transmitted pulse.

Another option is to use a third-party dedicated DSP filter engine like the Systolix
PulseDSP™ filter core. The AD7725 16-bit sigma-delta ADC has an on-chip
PulseDSP filter which can do 125 million multiply-accumulates per second.

Even in highly oversampled sampled data systems, an analog antialiasing filter is
still required ahead of the ADC and a reconstruction (anti-imaging) filter after the
DAC. Finally, as signal frequencies increase sufficiently, they surpass the
capabilities of available ADCs, and digital filtering then becomes impossible. Active
analog filtering is not possible at extremely high frequencies because of op amp
bandwidth and distortion limitations, and filtering requirements must then be met
using purely passive components. The primary focus of the following discussions
will be on filters which can run in real-time under DSP program control.

As an example, consider the comparison between an analog and a digital filter
shown in Figure 6.3. The cutoff frequency of the both filters is 1kHz. The analog
filter is realized as a 6-pole Chebyshev Type 1 filter (ripple in passband, no ripple in
stopband). In practice, this filter would probably be realized using three 2-pole
stages, each of which requires an op amp, and several resistors and capacitors. The
6-pole design is certainly not trivial, and maintaining the 0.5dB ripple specification
requires accurate component selection and matching.

DIGITAL FILTERING

ADC
DIGITAL

LOWPASS
FILTER

ANALOG
ANTIALIASING

FILTER
DAC

t t

H(f)

f

fs fs

ANALOG
ANTI-IMAGING

FILTER

x(n) y(n)

DIGITAL FILTERS

6.3

On the other hand, the digital FIR filter shown has only 0.002dB passband ripple,
linear phase, and a much sharper roll off. In fact, it could not be realized using
analog techniques! In a practical application, there are many other factors to
consider when evaluating analog versus digital filters. Most modern signal
processing systems use a combination of analog and digital techniques in order to
accomplish the desired function and take advantage of the best of both the analog
and the digital world.

Figure 6.2

There are many applications where digital filters must operate in real-time. This
places specific requirements on the DSP depending upon the sampling frequency
and the filter complexity. The key point is that the DSP must finish all
computations during the sampling period so it will be ready to process the next data
sample. Assume that the analog signal bandwidth to be processed is fa. This
requires the ADC sampling frequency fs to be at least 2fa. The sampling period is
1/fs. All DSP filter computations (including overhead) must be completed during
this interval. The computation time depends on the number of taps in the filter and
the speed and efficiency of the DSP. Each tap on the filter requires one
multiplication and one addition (multiply-accumulate). DSPs are generally
optimized to perform fast multiply-accumulates, and many DSPs have additional
features such as circular buffering and zero-overhead looping minimize the
“overhead” instructions that otherwise would be needed.

DIGITAL VERSUS ANALOG FILTERING

DIGITAL FILTERS

High Accuracy

Linear Phase (FIR Filters)

No Drift Due to Component
Variations

Flexible, Adaptive Filtering Possible

Easy to Simulate and Design

Computation Must be Completed in
Sampling Period - Limits Real Time

Operation

Requires High Performance ADC,
DAC & DSP

ANALOG FILTERS

Less Accuracy - Component
Tolerances

Non-Linear Phase

Drift Due to Component
Variations

Adaptive Filters Difficult

Difficult to Simulate and Design

Analog Filters Required at
High Frequencies and for

Anti-Aliasing Filters

No ADC, DAC, or DSP Required

DIGITAL FILTERS

6.4

Figure 6.3

Figure 6.4

ANALOG VERSUS DIGITAL FILTER
FREQUENCY RESPONSE COMPARISON

0

–40

–20

–60

–80

–100

0

–40

–20

–60

–80

–100
0 1 2 3 4 50 1 2 3 4 5

ANALOG FILTER

Chebyshev Type 1
 6 Pole, 0.5dB Ripple

DIGITAL FILTER

FIR, 129-Tap, 0.002dB Ripple,
Linear Phase, fs = 10kSPSdB dB

FREQUENCY (kHz) FREQUENCY (kHz)

PROCESSING REQUIREMENTS
FOR REAL TIME DIGITAL FILTERING

� Signal Bandwidth = fa
� Sampling Frequency fs > 2fa
� Sampling Period = 1 / fs
� Filter Computational Time + Overhead < Sampling Period

� Depends on Number of Taps
� Speed of DSP Multiplication-Accumulates (MACs)
� Efficiency of DSP

� Circular Buffering
� Zero Overhead Looping
� etc.

DIGITAL FILTERS

6.5

FINITE IMPULSE RESPONSE (FIR) FILTERS

There are two fundamental types of digital filters: finite impulse response (FIR) and
infinite impulse response (IIR). As the terminology suggests, these classifications
refer to the filter’s impulse response. By varying the weight of the coefficients and
the number of filter taps, virtually any frequency response characteristic can be
realized with an FIR filter. As has been shown, FIR filters can achieve performance
levels which are not possible with analog filter techniques (such as perfect linear
phase response). However, high performance FIR filters generally require a large
number of multiply-accumulates and therefore require fast and efficient DSPs. On
the other hand, IIR filters tend to mimic the performance of traditional analog
filters and make use of feedback. Therefore their impulse response extends over an
infinite period of time. Because of feedback, IIR filters can be implemented with
fewer coefficients than for an FIR filter. Lattice filters are simply another way to
implement either FIR or IIR filters and are often used in speech processing
applications. Finally, digital filters lend themselves to adaptive filtering
applications simply because of the speed and ease with which the filter
characteristics can be changed by varying the filter coefficients.

Figure 6.5

The most elementary form of an FIR filter is a moving average filter as shown in
Figure 6.6. Moving average filters are popular for smoothing data, such as in the
analysis of stock prices, etc. The input samples, x(n) are passed through a series of
buffer registers (labeled z–1, corresponding to the z-transform representation of a
delay element). In the example shown, there are four taps corresponding to a four-
point moving average. Each sample is multiplied by 0.25, and these results are
added to yield the final moving average output y(n). The figure also shows the
general equation of a moving average filter with N taps. Note again that N refers to
the number of filter taps, and not the ADC or DAC resolution as in previous
sections.

TYPES OF DIGITAL FILTERS

� Moving Average
� Finite Impulse Response (FIR)

� Linear Phase
� Easy to Design
� Computationally Intensive

� Infinite Impulse Response (IIR)
� Based on Classical Analog Filters
� Computationally Efficient

� Lattice Filters (Can be FIR or IIR)
� Adaptive Filters

DIGITAL FILTERS

6.6

Figure 6.6

Since the coefficients are equal, an easier way to perform a moving average filter is
shown in Figure 6.7. Note that the first step is store the first four samples, x(0),
x(1), x(2), x(3) in a register. These quantities are added and then multiplied by 0.25
to yield the first output, y(3). Note that the initial outputs y(0), y(1), and y(2) are not
valid because all registers are not full until sample x(3) is received.

When sample x(4) is received, it is added to the result, and sample x(0) is subtracted
from the result. The new result must then be multiplied by 0.25. Therefore, the
calculations required to produce a new output consist of one addition, one
subtraction, and one multiplication, regardless of the length of the moving average
filter.

The step function response of a 4-point moving average filter is shown in Figure 6.8.
Notice that the moving average filter has no overshoot. This makes it useful in
signal processing applications where random white noise must be filtered but pulse
response preserved. Of all the possible linear filters that could be used, the moving
average produces the lowest noise for a given edge sharpness. This is illustrated in
Figure 6.9, where the noise level becomes lower as the number of taps are
increased. Notice that the 0% to 100% risetime of the pulse response is equal to the
total number of taps in the filter multiplied by the sampling period.

h(3)h(2)h(1)h(0)

4-POINT MOVING AVERAGE FILTER

Z–1 Z–1 Z–1

ΣΣΣΣ
= 1

4 = 1
4 = 1

4 = 1
4

x(n) x(n–1) x(n–2) x(n–3)

y(n)

y(n) = h(0) x(n) + h(1) x(n – 1) + h(2) x(n – 2) + h(3) x(n – 3)

 = x(n) + x(n – 1) + x(n – 2) + x(n – 3)1
4

1
4

1
4

1
4

1
4= x(n) + x(n – 1) + x(n – 2) + x(n – 3)

For N-Point
Moving Average Filter: y(n) = ΣΣΣΣ1

N k = 0

N–1
x(n – k)

DIGITAL FILTERS

6.7

Figure 6.7

Figure 6.8

CALCULATING OUTPUT OF
4-POINT MOVING AVERAGE FILTER

y(3) = x(3) + x(2) + x(1) + x(0)

y(4) = x(4) + x(3) + x(2) + x(1)

y(5) = x(5) + x(4) + x(3) + x(2)

y(6) = x(6) + x(5) + x(4) + x(3)

y(7) = x(7) + x(6) + x(5) + x(4)

Each Output Requires:
1 multiplication, 1 addition, 1 subtraction

0.25

0.25

0.25

0.25

0.25

4-TAP MOVING AVERAGE FILTER STEP RESPONSE

= Input x(n)

= Output y(n)

0 1 2 3 4 5 6 7 8 9 10 11 12

n

y(n) = ΣΣΣΣ1
N k = 0

N–1
x(n – k)

y(n) = ΣΣΣΣ1
4 k = 0

3
x(n – k)For N = 4:

General:

DIGITAL FILTERS

6.8

Figure 6.9

The frequency response of the simple moving average filter is sin(x)/x and is shown
on a linear amplitude scale in Figure 6.10. Adding more taps to the filter sharpens
the rolloff, but does not significantly reduce the amplitude of the sidelobes which
are approximately 14dB down for the 11 and 31-tap filter. These filters are
definitely not suitable where high stopband attenuation is required.

Figure 6.10

MOVING AVERAGE FILTER FREQUENCY RESPONSE

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

3 point

11 point

31 point

Frequency (fraction of fs)

Amplitude

MOVING AVERAGE FILTER RESPONSE
TO NOISE SUPERIMPOSED ON STEP INPUT

0 500Sample Number

0 500Sample Number 0 500Sample Number

Note:
Latency not shown

Note:
Latency not shown

DIGITAL FILTERS

6.9

It is possible to dramatically improve the performance of the simple FIR moving
average filter by properly selecting the individual weights or coefficients rather than
giving them equal weight. The sharpness of the rolloff can be improved by adding
more stages (taps), and the stopband attenuation characteristics can be improved by
properly selecting the filter coefficients. Note that unlike the moving average filter,
one multiply-accumulate cycle is now required per tap for the generalized FIR filter.
The essence of FIR filter design is the appropriate selection of the filter coefficients
and the number of taps to realize the desired transfer function H(f). Various
algorithms are available to translate the frequency response H(f) into a set of FIR
coefficients. Most of this software is commercially available and can be run on PCs.
The key theorem of FIR filter design is that the coefficients h(n) of the FIR filter are
simply the quantized values of the impulse response of the frequency transfer
function H(f). Conversely, the impulse response is the discrete Fourier transform of
H(f).

Figure 6.11

The generalized form of an N-tap FIR filter is shown in Figure 6.11. As has been
discussed, an FIR filter must perform the following convolution equation:

y(n) = h(k)*x(n) = ∑
−

=
−

1N

0k
)kn(x)k(h .

where h(k) is the filter coefficient array and x(n-k) is the input data array to the
filter. The number N, in the equation, represents the number of taps of the filter
and relates to the filter performance as has been discussed above. An N-tap FIR
filter requires N multiply-accumulate cycles.

N-TAP FINITE IMPULSE RESPONSE (FIR) FILTER

h(N–1)h(N–2)h(1)h(0)

Z–1 Z–1 Z–1

ΣΣΣΣ

x(n) x(n–1) x(n–N+2) x(n–N+1)

y(n)

y(n) = h(n) ✳✳✳✳ x(n) = ΣΣΣΣ
k = 0

N–1
h(k) x(n – k)

✳✳✳✳ = Symbol for Convolution

Requires N multiply-accumulates for each output

DIGITAL FILTERS

6.10

FIR filter diagrams are often simplified as shown in Figure 6.12. The summations
are represented by arrows pointing into the dots, and the multiplications are
indicated by placing the h(k) coefficients next to the arrows on the lines. The z–1
delay element is often shown by placing the label above or next to the appropriate
line.

Figure 6.12

FIR FILTER IMPLEMENTATION IN DSP HARDWARE USING
CIRCULAR BUFFERING

In the series of FIR filter equations, the N coefficient locations are always accessed
sequentially from h(0) to h(N–1). The associated data points circulate through the
memory; new samples are added replacing the oldest each time a filter output is
computed. A fixed boundary RAM can be used to achieve this circulating buffer
effect as shown in Figure 6.13 for a 4 tap FIR filter. The oldest data sample is
replaced by the newest after each convolution. A "time history" of the four most
recent data samples is always stored in RAM.

To facilitate memory addressing, old data values are read from memory starting
with the value one location after the value that was just written. For example, x(4)
is written into memory location 0, and data values are then read from locations 1, 2,
3, and 0. This example can be expanded to accommodate any number of taps. By
addressing data memory locations in this manner, the address generator need only
supply sequential addresses, regardless of whether the operation is a memory read
or write. This data memory buffer is called circular because when the last location
is reached, the memory pointer is reset to the beginning of the buffer.

SIMPLIFIED FILTER NOTATIONS

h(N–1)h(N–2)h(1)h(0)

Z–1 Z–1 Z–1
x(n) x(n–1) x(n–N+2) x(n–N+1)

y(n)

h(N–1)h(N–2)h(1)h(0)

x(n) x(n–1) x(n–N+2) x(n–N+1)

y(n)

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

Z–1 Z–1 Z–1

DIGITAL FILTERS

6.11

Figure 6.13

The coefficients are fetched simultaneously with the data. Due to the addressing
scheme chosen, the oldest data sample is fetched first. Therefore, the last coefficient
must be fetched first. The coefficients can be stored backwards in memory: h(N-1) is
the first location, and h(0) is the last, with the address generator providing
incremental addresses. Alternatively, coefficients can be stored in a normal manner
with the accessing of coefficients starting at the end of the buffer, and the address
generator being decremented. In the example shown in Figure 6.13, the coefficients
are stored in a reverse manner.

A simple summary flowchart for these operations is shown in Figure 6.14. For
Analog Devices’ DSPs, all operations within the filter loop are completed in one
instruction cycle, thereby greatly increasing efficiency. This is referred to as zero-
overhead looping. The actual FIR filter assembly code for the ADSP-21XX family of
fixed point DSPs is shown in Figure 6.15. The arrows in the diagram point to the
actual executable instructions, and the rest of the code are simply comments added
for clarification.

CALCULATING OUTPUTS OF 4-TAP FIR
FILTER USING A CIRCULAR BUFFER

y(3) = h(0) x(3) + h(1) x(2) + h(2) x(1) + h(3) x(0)

y(4) = h(0) x(4) + h(1) x(3) + h(2) x(2) + h(3) x(1)

y(5) = h(0) x(5) + h(1) x(4) + h(2) x(3) + h(3) x(2)

Memory
Location

0

1

2

3

Read

x(0)

x(1)

x(2)

x(3)

Write

x(4)

Read

x(4)

x(1)

x(2)

x(3)

Write

x(5)

Read

x(4)

x(5)

x(2)

x(3)

DIGITAL FILTERS

6.12

The first instruction (labeled fir:) sets up the computation by clearing the MR
register and loading the MX0 and MY0 registers with the first data and coefficient
values from data and program memory. The multiply-accumulate with dual data
fetch in the convolution loop is then executed N–1 times in N cycles to compute the
sum of the first N–1 products. The final multiply-accumulate instruction is
performed with the rounding mode enabled to round the result to the upper 24 bits
of the MR register. The MR1 register is then conditionally saturated to its most
positive or negative value based on the status of the overflow flag contained in the
MV register. In this manner, results are accumulated to the full 40-bit precision of
the MR register, with saturation of the output only if the final result overflowed
beyond the least significant 32 bits of the MR register.

The limit on the number of filter taps attainable for a real-time implementation of
the FIR filter subroutine is determined primarily by the processor cycle time, the
sampling rate, and the number of other computations required. The FIR subroutine
presented here requires a total of N+5 cycles for a filter of length N. For the ADSP-
2189M 75MIPS DSP, one instruction cycle is 13.3ns, so a 100-tap filter would
require 13.3ns×100 + 5×13.3ns = 1330ns + 66.5ns = 1396.5ns = 1.4µs.

Figure 6.14

PSEUDOCODE FOR FIR FILTER PROGRAM
USING A DSP WITH CIRCULAR BUFFERING

1. Obtain sample from ADC (typically interrupt driven)
2. Move sample into input signal’s circular buffer
3. Update the pointer for the input signal’s circular buffer
4. Zero the accumulator
5. Implement filter (control the loop through each of the coefficients)

 6. Fetch the coefficient from the coefficient’s circular buffer
 7. Update the pointer for the coefficient’s circular buffer
 8. Fetch the sample from the input signal’s circular buffer
 9. Update the pointer for the input signal’s circular buffer
10. Multiply the coefficient by the sample
11. Add the product to the accumulator

12. Move the filtered sample to the DAC
ADSP-21xx Example code:

CNTR = N-1;
DO convolution UNTIL CE;
convolution:
 MR = MR + MX0 * MY0(SS), MX0 = DM(I0,M1), MY0 = PM(I4,M5);

DIGITAL FILTERS

6.13

Figure 6.15

DESIGNING FIR FILTERS

FIR filters are relatively easy to design using modern CAD tools. Figure 6.16
summarizes the characteristics of FIR filters as well as the most popular design
techniques. The fundamental concept of FIR filter design is that the filter frequency
response is determined by the impulse response, and the quantized impulse response
and the filter coefficients are identical. This can be understood by examining Figure
6.17. The input to the FIR filter is an impulse, and as the impulse propagates
through the delay elements, the filter output is identical to the filter coefficients.
The FIR filter design process therefore consists of determining the impulse response
from the desired frequency response, and then quantizing the impulse response to
generate the filter coefficients.

It is useful to digress for a moment and examine the relationship between the time
domain and the frequency domain to better understand the principles behind digital
filters such as the FIR filter. In a sampled data system, a convolution operation can
be carried out by performing a series of multiply-accumulates. The convolution
operation in the time or frequency domain is equivalent to point-by-point
multiplication in the opposite domain. For example, convolution in the time domain
is equivalent to multiplication in the frequency domain. This is shown graphically in
Figure 6.18. It can be seen that filtering in the frequency domain can be
accomplished by multiplying all frequency components in the passband by a 1 and
all frequencies in the stopband by 0. Conversely, convolution in the frequency
domain is equivalent to point by point multiplication in the time domain.

ADSP-21XX FIR FILTER ASSEMBLY CODE
(SINGLE PRECISION)

.MODULE fir_sub;
{ FIR Filter Subroutine

Calling Parameters
I0 --> Oldest input data value in delay line
I4 --> Beginning of filter coefficient table
L0 = Filter length (N)
L4 = Filter length (N)
M1,M5 = 1
CNTR = Filter length - 1 (N-1)

Return Values
MR1 = Sum of products (rounded and saturated)
I0 --> Oldest input data value in delay line
I4 --> Beginning of filter coefficient table

Altered Registers
MX0,MY0,MR

Computation Time
(N - 1) + 6 cycles = N + 5 cycles

All coefficients are assumed to be in 1.15 format. }

.ENTRY fir;
fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5);

CNTR = N-1;
DO convolution UNTIL CE;

convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
RTS;

.ENDMOD;

DIGITAL FILTERS

6.14

Figure 6.16

Figure 6.17

CHARACTERISTICS OF FIR FILTERS

� Impulse Response has a Finite Duration (N Cycles)

� Linear Phase, Constant Group Delay (N Must be Odd)

� No Analog Equivalent

� Unconditionally Stable

� Can be Adaptive

� Computational Advantages when Decimating Output

� Easy to Understand and Design

� Windowed-Sinc Method

� Fourier Series Expansion with Windowing

� Frequency Sampling Using Inverse FFT - Arbitrary Frequency
Response

� Parks-McClellan Program with Remez Exchange Algorithm

FIR FILTER IMPULSE RESPONSE
DETERMINES THE FILTER COEFFICIENTS

h(8)h(7)h(1)h(0)

Z–1 Z–1 Z–1

ΣΣΣΣ

x(n) x(n–1) x(n–7) x(n–8)

y(n)

1

h(0)

h(1)

h(2)

h(3)

h(4)

h(5)

h(6)

h(7)

h(8)

x(n)

N = 9

n n

y(n)

DIGITAL FILTERS

6.15

Figure 6.18

The transfer function in the frequency domain (either a 1 or a 0) can be translated
to the time domain by the discrete Fourier transform (in practice, the fast Fourier
transform is used). This transformation produces an impulse response in the time
domain. Since the multiplication in the frequency domain (signal spectrum times
the transfer function) is equivalent to convolution in the time domain (signal
convolved with impulse response), the signal can be filtered by convolving it with
the impulse response. The FIR filter is exactly this process. Since it is a sampled
data system, the signal and the impulse response are quantized in time and
amplitude yielding discrete samples. The discrete samples comprising the desired
impulse response are the FIR filter coefficients.

The mathematics involved in filter design (analog or digital) generally make use of
transforms. In continuous-time systems, the Laplace transform can be considered to
be a generalization of the Fourier Transform. In a similar manner, it is possible to
generalize the Fourier transform for discrete-time sampled data systems, resulting
in what is commonly referred to as the z-transform. Details describing the use of the
z-transform in digital filter design are given in References 1, 2, 3, 4, 5, and 6, but
the theory is not necessary for the rest of this discussion.

DUALITY OF TIME AND FREQUENCY

t

t

H(k)

f
t

f

f

FFT

INPUT

FILTER
RESPONSE

OUTPUT

TIME DOMAIN FREQUENCY DOMAIN
x(n)

h(m)

x(n) ✳✳✳✳ h(m)

X(k)

X(k) • H(k)

1

0

DIGITAL FILTERS

6.16

FIR Filter Design Using the Windowed-Sinc Method

An ideal lowpass filter frequency response is shown in Figure 6.19A. The
corresponding impulse response in the time domain is shown in Figure 6.19B, and
follows the sin(x)/x (sinc) function. If an FIR filter is used to implement this
frequency response, an infinite number of taps are required. The windowed-sinc
method is used to implement the filter as follows. First, the impulse response is
truncated to a reasonable number of N taps as in Figure 6.19C. As has been
discussed in Section 5, the frequency response corresponding to Figure 6.19C has
relatively poor sidelobe performance because of the end-point discontinuities in the
truncated impulse response. The next step in the design process is to apply an
appropriate window function as shown in Figure 6.19D to the truncated impulse.
This forces the endpoints to zero. The particular window function chosen determines
the rolloff and sidelobe performance of the filter. Window functions have been
discussed in detail in Section 5, and there are several good choices depending upon
the desired frequency response. The frequency response of the truncated and
windowed-sinc impulse response of Figure 6.19E is shown in Figure 6.19F.

Figure 6.19

FIR FILTER DESIGN USING
THE WINDOWED-SINC METHOD

N

NN

f t t

t t f

Ideal Lowpass Filter
Frequency Response

fc

Ideal Lowpass Filter
Impulse Response

Truncated
Impulse Response

Window
Function

Windowed
Impulse Response

Final Filter
Frequency Response

(A) (B) (C)

(D) (E) (F)

sin x
x

(sinc function)

fc

1

0

1

0

DIGITAL FILTERS

6.17

FIR Filter Design Using the Fourier Series Method with Windowing

The Fourier series with windowing method (Figure 6.20) starts by defining the
transfer function H(f) mathematically and expanding it in a Fourier series. The
Fourier series coefficients define the impulse response and therefore the coefficients
of the FIR filter. However, the impulse response must be truncated and windowed
as in the previous method. After truncation and windowing, an FFT is used to
generate the corresponding frequency response. The frequency response can be
modified by choosing different window functions, although precise control of the
stopband characteristics is difficult in any method which uses windowing.

Figure 6.20

FIR Filter Design Using the Frequency Sampling Method

This method is extremely useful in generating an FIR filter with an arbitrary
frequency response. H(f) is specified as a series of amplitude and phase points in the
frequency domain. The points are then converted into real and imaginary
components. Next, the impulse response is obtained by taking the complex inverse
FFT of the frequency response. The impulse response is then truncated to N points,
and a window function is applied to minimize the effects of truncation. The filter
design should then be tested by taking its FFT and evaluating the frequency
response. Several iterations may be required to achieve the desired response.

FIR FILTER DESIGN USING
FOURIER SERIES METHOD WITH WINDOWING

� Specify H(f)
� Expand H(f) in a Fourier series: The Fourier series coefficients are

the coefficients of the FIR filter, h(m), and its Impulse Response
� Truncate the Impulse Response to N points (taps)
� Apply a suitable Window function to h(m) to smooth the effects of

truncation
� Lacks precise control of cutoff frequency; Highly dependent

on Window function

DIGITAL FILTERS

6.18

Figure 6.21

FIR Filter Design Using the Parks-McClellan Program

Historically, the design method based on the use of windows to truncate the impulse
response and to obtain the desired frequency response was the first method used for
designing FIR filters. The frequency-sampling method was developed in the 1970s
and is still popular where the frequency response is an arbitrary function.

Modern CAD programs are available today which greatly simplify the design of
lowpass, highpass, bandpass, or bandstop FIR filters. A popular one was developed
by Parks and McClellan and uses the Remez exchange algorithm. The filter design
begins by specifying the parameters shown in Figure 6.22: passband ripple,
stopband ripple (same as attenuation), and the transition region. For this design
example, the QED1000 program from Momentum Data Systems was used (a demo
version is free and downloadable from http://www.mds.com).

For this example, we will design an audio lowpass filter that operates at a sampling
rate of 44.1kHz. The filter is specified as shown in Figure 6.22: 18kHz passband
frequency, 21kHz stopband frequency, 0.01dB passband ripple, 96dB stopband
ripple (attenuation). We must also specify the wordlength of the coefficients, which
in this case is 16 bits, assuming a 16-bit fixed-point DSP is to be used.

FREQUENCY SAMPLING METHOD FOR FIR FILTERS
 WITH ARBITRARY FREQUENCY RESPONSE

� Specify H(k) as a Finite Number of Spectral Points Spread
Uniformly Between 0 and 0.5fs (512 Usually Sufficient)

� Specify Phase Points (Can Make Equal to Zero)
� Convert Rectangular Form (Real + Imaginary)
� Take the Complex Inverse FFT of H(k) Array to Obtain the Impulse

Response
� Truncate the Impulse Response to N Points
� Apply a suitable Window function to h(m) to smooth the effects of

truncation
� Test Filter Design and Modify if Necessary
� CAD Design Techniques More Suitable for Lowpass, Highpass,

Bandpass, or Bandstop Filters

DIGITAL FILTERS

6.19

Figure 6.22

Figure 6.23

PARKS McCLELLAN EQUIRIPPLE FIR
FILTER DESIGN: PROGRAM INPUTS

� Filter Type:
� Lowpass
� Highpass
� Bandpass
� Bandstop
� Differentiator
� Multiband

� Sampling Frequency: 44,100Hz
� Passband Frequency: 18,000Hz
� Stopband Frequency: 21,000Hz
� Passband Ripple: 0.01dB
� Stopband Ripple (Attenuation): 96dB
� Wordlength: 16-bits

FIR CAD TECHNIQUES: PARKS McCLELLAN PROGRAM
WITH REMEZ EXCHANGE ALGORITHM

Passband Ending
Frequency

1

0
FREQUENCY

δδδδ1 = Passband Ripple

δδδδ2 = Stopband Ripple
 (Attenuation)

Stopband Beginning
Frequency

Ripple Ratio =
δδδδ2
δδδδ1

GAIN

fp

fc

DIGITAL FILTERS

6.20

The program allows us to choose between a window-based design or the equiripple
Parks-McClellan program. We will choose the latter. The program now estimates
the number of taps required to implement the filter based on the above
specifications. In this case, it is 69 taps. At this point, we can accept this and
proceed with the design or decrease the number of taps and see what degradation is
specifications occur.

We will accept this number and let the program complete the calculations. The
program outputs the frequency response (Figure 6.25), step function response
(Figure 6.26), s and z-plane analysis data, and the impulse response (Figure 6.27).
The QED1000 program then outputs the quantized filter coefficients to a program
which generates the actual DSP assembly code for a number of popular DSPs,
including Analog Devices’. The program is quite flexible and allows the user to
perform a number of scenarios to optimize the filter design.

Figure 6.24

The 69-tap FIR filter requires 69 + 5 = 74 instruction cycles using the ADSP-2189M
75MIPS processor, which yields a total computation time per sample of 74×13.3ns =
984ns. The sampling interval is 1/44.1kHz, or 22.7µs. This allows 22.7µs – 0.984µs =
21.7µs for overhead and other operations.

Other options are to use a slower processor for this application (3.3MIPS), a more
complex filter which takes more computation time (up to N = 1700), or increase the
sampling frequency to about 1MSPS.

FIR FILTER PROGRAM OUTPUTS

� Estimated Number of Taps Required: 69
� Accept? Change? Accept

� Frequency Response (Linear and Log Scales)
� Step Response
� S - and Z - Plane Analysis
� Impulse Response: Filter Coefficients (Quantized)
� DSP FIR Filter Assembly Code

DIGITAL FILTERS

6.21

Figure 6.25

Figure 6.26

FIR DESIGN EXAMPLE: FREQUENCY RESPONSE

GAIN

FREQUENCY (Hz),

Courtesy Momentum Data Systems

18kHz

21kHz

Passband Ripple < 0.01dB

96dB

fs = 44.1kSPS fs
2

FIR FILTER DESIGN EXAMPLE: STEP RESPONSE

TIME (MILLISECONDS)

AMPLITUDE

Courtesy Momentum Data Systems

DIGITAL FILTERS

6.22

Figure 6.27

Figure 6.28

FIR DESIGN EXAMPLE: IMPULSE RESPONSE
(FILTER COEFFICIENTS)

AMPLITUDE

TIME (MILLISECONDS)

N = 69

Courtesy Momentum Data Systems

DESIGN EXAMPLE USING ADSP-2189M:
PROCESSOR TIME FOR 69-TAP FIR FILTER

� Sampling Frequency fs = 44.1kSPS

� Sampling Interval = 1 / fs = 22.7µs

� Number of Filter Taps, N = 69

� Number of Required Instructions = N + 5 = 74

� Processing Time / Instruction = 13.3ns (75MIPS)

(ADSP-2189M)

� Total Processing Time = 74×13.3ns = 984ns

� Total Processing Time < Sampling Interval with
22.7µs – 0.984µs = 21.7µs for Other Operations
� Increase Sampling Frequency to 1MHz
� Use Slower DSP (3.3MIPS)
� Add More Filter Taps (Up to N = 1700)

DIGITAL FILTERS

6.23

Designing Highpass, Bandpass, and Bandstop Filters Based on Lowpass
Filter Design

Converting a lowpass filter design impulse response into a highpass filter impulse
response can be accomplished in one of two ways. In the spectral inversion method,
the sign of each filter coefficient in the lowpass filter impulse response is changed.
Next, 1 is added to the center coefficient. In the spectral reversal method, the sign of
every other coefficient is changed. This reverses the frequency domain plot. In other
words, if the cutoff of the lowpass filter is 0.2fs, the resulting highpass filter will
have a cutoff frequency of 0.5fs – 0.2fs = 0.3fs. This must be considered when doing
the original lowpass filter design.

Figure 6.29

Bandpass and bandstop filters can be designed by combining individual lowpass and
highpass filters in the proper manner. Bandpass filters are designed by placing the
lowpass and highpass filters in cascade. The equivalent impulse response of the
cascaded filters is then obtained by convolving the two individual impulse
responses.

A bandstop filter is designed by connecting the lowpass and highpass filters in
parallel and adding their outputs. The equivalent impulse response is then obtained
by adding the two individual impulse responses.

DESIGNING HIGHPASS FILTERS
USING LOWPASS FILTER IMPULSE RESPONSE

� Spectral Inversion Technique:
� Design Lowpass Filter (Linear Phase, N odd)
� Change the Sign of Each Coefficient in the Impulse

Response, h(m)
� Add 1 to the Coefficient at the Center of Symmetry

� Spectral Reversal Technique:
� Design Lowpass Filter
� Change the Sign of Every Other Coefficient in the

Impulse Response, h(m)
� This Reverses the Frequency Domain left-for-right:

0 becomes 0.5, and 0.5 becomes 0;
i.e., if the cutoff frequency of the lowpass filter is 0.2,
the cutoff of the resulting highpass filter is 0.3

DIGITAL FILTERS

6.24

Figure 6.30

INFINITE IMPULSE RESPONSE (IIR) FILTERS

As was mentioned previously, FIR filters have no real analog counterparts, the
closest analogy being the weighted moving average. In addition, FIR filters have
only zeros and no poles. On the other hand, IIR filters have traditional analog
counterparts (Butterworth, Chebyshev, Elliptic, and Bessel) and can be analyzed
and synthesized using more familiar traditional filter design techniques.

Infinite impulse response filters get their name because their impulse response
extends for an infinite period of time. This is because they are recursive, i.e., they
utilize feedback. Although they can be implemented with fewer computations than
FIR filters, IIR filters do not match the performance achievable with FIR filters, and
do not have linear phase. Also, there is no computational advantage achieved when
the output of an IIR filter is decimated because each output value must always be
calculated.

BANDPASS AND BANDSTOP FILTERS
DESIGNED FROM LOWPASS AND HIGHPASS FILTERS

h1(k) h2(k)
x(n) y(n)

h1(k) ✳✳✳✳ h2(k)
x(n) y(n)

h1(k)

h2(k)
ΣΣΣΣ

x(n)
h1(k) + h2(k)

x(n) y(n)
y(n)

✳✳✳✳ = Convolution

Lowpass Highpass Bandpass

Highpass

Lowpass Bandstop

DIGITAL FILTERS

6.25

Figure 6.31

IIR filters are generally implemented in two-pole sections called biquads because
they are described with a biquadratic equation in the z-domain. Higher order filters
are designed using cascaded biquad sections, i.e., a 6-pole filter requires 3 biquad
sections.

The basic IIR biquad is shown in Figure 6.32. The zeros are formed by the
feedforward coefficients b0, b1, and b2; the poles are formed by the feedback
coefficients a1, and a2.

Figure 6.32

INFINITE IMPULSE RESPONSE (IIR) FILTERS

� Uses Feedback (Recursion)
� Impulse Response has an Infinite Duration
� Potentially Unstable
� Non-Linear Phase
� More Efficient than FIR Filters
� No Computational Advantage when Decimating

Output
� Usually Designed to Duplicate Analog Filter Response
� Usually Implemented as Cascaded Second-Order

Sections (Biquads)

HARDWARE IMPLEMENTATION OF
SECOND-ORDER IIR FILTER (BIQUAD) DIRECT FORM 1

z–1

z–1

z–1

z–1

b0

b1

b2

–a1

–a2

x(n) y(n)ΣΣΣΣ

y(n) = b0x(n) + b1x(n–1) + b2x(n–2) – a1y(n–1) – a2y(n–2)

y(n) = ΣΣΣΣ bkx(n–k) – ΣΣΣΣ aky(n–k)
k=0

M

k=1

N
H(z) =

ΣΣΣΣ bkz–k
k=0

M

1 + ΣΣΣΣ akz–k

k=1

N

(Zeros)

(Poles)

DIGITAL FILTERS

6.26

The general digital filter equation is shown in Figure 6.32 which gives rise to the
general transfer function H(z) which contains polynomials in both the numerator
and the denominator. The roots of the denominator determine the pole locations of
the filter, and the roots of the numerator determine the zero locations. Although it
is possible to construct a high order IIR filter directly from this equation (called the
direct form implementation), accumulation errors due to quantization errors (finite
wordlength arithmetic) may give rise to instability and large errors. For this reason,
it is common to cascade several biquad sections with appropriate coefficients rather
than use the direct form implementation. The biquads can be scaled separately and
then cascaded in order to minimize the coefficient quantization and the recursive
accumulation errors. Cascaded biquads execute more slowly than their direct form
counterparts, but are more stable and minimize the effects of errors due to finite
arithmetic errors.

The Direct Form 1 biquad section shown in Figure 6.32 requires four registers. This
configuration can be changed into an equivalent circuit shown in Figure 6.33 which
is called the Direct Form 2 which requires only two registers. It can be shown that
the equations describing the Direct Form 2 IIR biquad filter are the same as those
for Direct Form 1. As in the case of FIR filters, the notation for an IIR filter is often
simplified as shown in Figure 6.34.

Figure 6.33

IIR BIQUAD FILTER DIRECT FORM 2

z–1

z–1

–a1

–a2

b1

b2

x(n) y(n)ΣΣΣΣΣΣΣΣ
b0

y(n) = b0x(n) + b1x(n–1) + b2x(n–2) – a1y(n–1) – a2y(n–2)

Reduces to the same equation as Direct Form 1:

Requires Only 2 Delay Elements (Registers)

DIGITAL FILTERS

6.27

Figure 6.34

IIR FILTER DESIGN TECHNIQUES

A popular method for IIR filter design is to first design the analog-equivalent filter
and then mathematically transform the transfer function H(s) into the z-domain,
H(z). Multiple pole designs are implemented using cascaded biquad sections. The
most popular analog filters are the Butterworth, Chebyshev, Elliptical, and Bessel
(see Figure 6.35). There are many CAD programs available to generate the Laplace
transform, H(s), for these filters.

The all-pole Butterworth (also called maximally flat) has no ripple in the passband
or stopband and has monotonic response in both regions. The all-pole Type 1
Chebyshev filter has a faster rolloff than the Butterworth (for the same number of
poles) and has ripple in the passband. The Type 2 Chebyschev filter is rarely used,
but has ripple in the stopband rather than the passband.

The Elliptical (Cauer) filter has poles and zeros and ripple in both the passband and
stopband. This filter has even faster rolloff than the Chebyshev for the same
number of poles. The Elliptical filter is often used where degraded phase response
can be tolerated.

Finally, the Bessel (Thompson) filter is an all-pole filter which is optimized for pulse
response and linear phase but has the poorest rolloff of any of the types discussed
for the same number of poles.

IIR BIQUAD FILTER SIMPLIFIED NOTATIONS

z–1

z–1

–a1

–a2

b1

b2

x(n) y(n)
b0

–a1

–a2

b1

b2

x(n) y(n)
b0

z–1

z–1

DIGITAL FILTERS

6.28

Figure 6.35

All of the above types of analog filters are covered in the literature, and their
Laplace transforms, H(s), are readily available – either from tables or CAD
programs. There are three methods used to convert the Laplace transform into the
z-transform: impulse invariant transformation, bilinear transformation, and the
matched z-transform. The resulting z-transforms can be converted into the
coefficients of the IIR biquad. These techniques are highly mathematically intensive
and will not be discussed further.

A CAD approach for IIR filter design is similar to the Parks-McClellan program
used for FIR filters. This technique uses the Fletcher-Powell algorithm.

In calculating the throughput time of a particular DSP IIR filter, one should
examine the benchmark performance specification for a biquad filter section. For
the ADSP-21xx-family, seven instruction cycles are required to execute a biquad
filter output sample. For the ADSP-2189M, 75MIPS DSP, this corresponds to 7 ×
13.3ns = 93ns, corresponding to a maximum possible sampling frequency of
10MSPS (neglecting overhead).

REVIEW OF POPULAR ANALOG FILTERS

� Butterworth
� All Pole, No Ripples in Passband or Stopband
� Maximally Flat Response (Fastest Roll-off with No Ripple)

� Chebyshev (Type 1)
� All Pole, Ripple in Passband, No Ripple in Stopband
� Shorter Transition Region than Butterworth for Given Number

of Poles
� Type 2 has Ripple in Stopband, No Ripple in Passband

� Elliptical (Cauer)
� Has Poles and Zeros, Ripple in Both Passband and Stopband
� Shorter Transition Region than Chebyshev for Given Number

of Poles
� Degraded Phase Response

� Bessel (Thompson)
� All Pole, No Ripples in Passband or Stopband
� Optimized for Linear Phase and Pulse Response
� Longest Transition Region of All for Given Number of Poles

DIGITAL FILTERS

6.29

Figure 6.36

Figure 6.37

IIR FILTER DESIGN TECHNIQUES

� Impulse Invarient Transformation Method
� Start with H(s) for Analog Filter
� Take Inverse Laplace Transform to get Impulse Response
� Obtain z-Transform H(z) from Sampled Impulse Response
� z-Transform Yields Filter Coefficients
� Aliasing Effects Must be Considered

� Bilinear Transformation Method
� Another Method for Transforming H(s) into H(z)
� Performance Determined by the Analog System’s

Differential Equation
� Aliasing Effects do not Occur

� Matched z-Transform Method
� Maps H(s) into H(z) for filters with both poles and zeros

� CAD Methods
� Fletcher-Powell Algorithm
� Implements Cascaded Biquad Sections

THROUGHPUT CONSIDERATIONS FOR IIR FILTERS

� Determine How Many Biquad Sections (N) are Required to
Realize the Desired Frequency Response

� Multiply this by the number of instruction cycles per Biquad
for the DSP and add overhead cycles (5N + 2 cycles for the
ADSP-21xx series, for example).

� The Result (plus overhead) is the Minimum Allowable
Sampling Period (1 / fs) for Real-Time Operation

DIGITAL FILTERS

6.30

Summary: FIR Versus IIR Filters

Choosing between FIR and IIR filter designs can be somewhat of a challenge, but a
few basic guidelines can be given. Typically, IIR filters are more efficient than FIR
filters because they require less memory and fewer multiply-accumulates are
needed. IIR filters can be designed based upon previous experience with analog
filter designs. IIR filters may exhibit instability problems, but this is much less
likely to occur if higher order filters are designed by cascading second-order
systems.

On the other hand, FIR filters require more taps and multiply-accumulates for a
given cutoff frequency response, but have linear phase characteristics. Since FIR
filters operate on a finite history of data, if some data is corrupted (ADC sparkle
codes, for example) the FIR filter will ring for only N–1 samples. Because of the
feedback, however, an IIR filter will ring for a considerably longer period of time.

If sharp cutoff filters are needed and processing time is at a premium, IIR elliptic
filters are a good choice. If the number of multiply/accumulates is not prohibitive,
and linear phase is a requirement, then the FIR should be chosen.

Figure 6.38

COMPARISON BETWEEN FIR AND IIR FILTERS

IIR FILTERS

More Efficient

Analog Equivalent

May Be Unstable

Non-Linear Phase Response

More Ringing on Glitches

CAD Design Packages Available

No Efficiency Gained by Decimation

FIR FILTERS

Less Efficient

No Analog Equivalent

Always Stable

Linear Phase Response

Less Ringing on Glitches

CAD Design Packages Available

Decimation Increases Efficiency

DIGITAL FILTERS

6.31

MULTIRATE FILTERS

There are many applications where it is desirable to change the effective sampling
rate in a sampled data system. In many cases, this can be accomplished simply by
changing the sampling frequency to the ADC or DAC. However, it is often desirable
to accomplish the sample rate conversion after the signal has been digitized. The
most common techniques used are decimation (reducing the sampling rate by a
factor of M), and interpolation (increasing the sampling rate by a factor of L). The
decimation and interpolation factors (M and L) are normally integer numbers. In a
generalized sample-rate converter, it may be desirable to change the sampling
frequency by a non-integer number. In the case of converting the CD sampling
frequency of 44.1kHz to the digital audio tape (DAT) sampling rate of 48kHz,
interpolating by L =160 followed by decimation by M = 147 accomplishes the desired
result.

The concept of decimation is illustrated in Figure 6.39. The top diagram shows the
original signal, fa, which is sampled at a frequency fs. The corresponding frequency
spectrum shows that the sampling frequency is much higher than required to
preserve information contained in fa, i.e., fa is oversampled. Notice that there is no
information contained between the frequencies fa and fs – fa. The bottom diagram
shows the same signal where the sampling frequency has been reduced (decimated)
by a factor of M. Notice that even though the sampling rate has been reduced, there
is no aliasing and loss of information. Decimation by a larger factor than shown in
Figure 6.39 will cause aliasing.

Figure 6.39

DECIMATION OF A
SAMPLED SIGNAL BY A FACTOR OF M

fsfs
2

fs
2M

fs
M

t

t

f

f

1
fs

M
fs

A: ORIGINAL OVERSAMPLED SIGNAL

B: SIGNAL DECIMATED BY M

fa fs–fa

DIGITAL FILTERS

6.32

Figure 6.40A shows how to decimate the output of an FIR filter. The filtered data
y(n) is stored in a data register which is clocked at the decimated frequency fs/M.
This does not change the number of computations required of the digital filter, i.e.,
it still must calculate each output sample y(n).

Figure 6.40

Figure 6.40B shows a method for increasing the computational efficiency of the FIR
filter by a factor of M. The data from the delay registers are simply stored in N data
registers which are clocked at the decimated frequency fs/M. The FIR
multiply/accumulates now only have to be done every Mth clock cycle. This increase
in efficiency could be utilized by adding more taps to the FIR filter, doing other
computations in the extra time, or using a slower DSP.

Figure 6.41 shows the concept of interpolation. The original signal in 6.41A is
sampled at a frequency fs. In 6.41B, the sampling frequency has been increased by a
factor of L, and zeros have been added to fill in the extra samples. The signal with
added zeros is passed through an interpolation filter which provides the extra data
values.

DECIMATION COMBINED WITH FIR FILTERING

z–1 z–1 z–1

Data
RegisterΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

h(0) h(1) h(2) h(N–1)

z–1 z–1 z–1

N Data Registers

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

h(0) h(1) h(2) h(N–1)

fs
MClock =

Clock =
fs
M

x(n)

x(n)

A: No Change in Computational Efficiency

B: Computational Efficiency Increased by Factor of M

y(n) y(m) ↓↓↓↓ M

y(m) ↓↓↓↓ M

DIGITAL FILTERS

6.33

Figure 6.41

The frequency domain effects of interpolation are shown in Figure 6.42. The original
signal is sampled at a frequency fs and is shown in 6.42A. The interpolated signal in
6.42B is sampled at a frequency Lfs. An example of interpolation is a CD player
DAC, where the CD data is generated at a frequency of 44.1kHz. If this data is
passed directly to a DAC, the frequency spectrum shown in Figure 6.42A results,
and the requirements on the anti-imaging filter which precedes the DAC are
extremely stringent to overcome this. An oversampling interpolating DAC is
normally used, and the spectrum shown in Figure 6.42B results. Notice that the
requirements on the analog anti-imaging filter are now easier to realize. This is
important in maintaining relatively linear phase and also reducing the cost of the
filter.

The digital implementation of interpolation is shown in Figure 6.43. The original
signal x(n) is first passed through a rate expander which increases the sampling
frequency by a factor of L and inserts the extra zeros. The data then passes through
an interpolation filter which smoothes the data and interpolates between the
original data points. The efficiency of this filter can be improved by using a filter
algorithm which takes advantage of the fact that the zero-value input samples do
not require multiply-accumulates. Using a DSP which allows circular buffering and
zero-overhead looping also improves efficiency.

INTERPOLATION BY A FACTOR OF L

t

1
fs

t1
Lfs

1
Lfs

ORIGINAL
SAMPLED SIGNAL

SIGNAL WITH
ADDED ZEROS

SIGNAL AFTER
INTERPOLATING

FILTER

SAMPLING RATE = fs

SAMPLING RATE = Lfs

A:

B:

C:

t

DIGITAL FILTERS

6.34

Figure 6.42

Figure 6.43

EFFECTS OF INTERPOLATION
ON FREQUENCY SPECTRUM

fs
2

fs f

ORIGINAL SIGNAL

LfsLfs
2

f1
Lfs

SIGNAL INTERPOLATED BY L

2fs 3fs 4fst1
fs

t

TYPICAL INTERPOLATION IMPLEMENTATION

z–1 z–1 z–1↑↑↑↑ L

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

h(0) h(1) h(2) h(N–1)

Clock = Lfs

x(n)

y(m) ↑↑↑↑ L

Rate Expander
Increases Sample Rate
and Inserts Zeros

Interpolation Filter

Efficient DSP algorithms take advantage of:
Multiplications by zero
Circular Buffers
Zero-Overhead Looping

DIGITAL FILTERS

6.35

Interpolators and decimators can be combined to perform fractional sample rate
conversion as shown in Figure 6.44. The input signal x(n) is first interpolated by a
factor of L and then decimated by a factor of M. The resulting output sample rate is
Lfs/M. To maintain the maximum possible bandwidth in the intermediate signal,
the interpolation must come before the decimation; otherwise, some of the desired
frequency content in the original signal would be filtered out by the decimator.

An example is converting from the CD sampling rate of 44.1kHz to the digital audio
tape (DAT) sampling rate of 48.0kHz. The interpolation factor is 160, and the
decimation factor of 147. In practice, the interpolating filter h΄(k) and the
decimating filter h"(k) are combined into a single filter, h(k).

The entire sample-rate conversion function is integrated into the AD1890, AD1891,
AD1892, and AD1893-family which operates at frequencies between 8kHz and
56kHz (48kHz for the AD1892). The new AD1896 operates up to 196kHz.

Figure 6.44

ADAPTIVE FILTERS

Unlike analog filters, the characteristics of digital filters can easily be changed
simply by modifying the filter coefficients. This makes digital filters attractive in
communications applications such as adaptive equalization, echo cancellation, noise
reduction, speech analysis and synthesis, etc. The basic concept of an adaptive filter
is shown in Figure 6.45. The objective is to filter the input signal, x(n), with an
adaptive filter in such a manner that it matches the desired signal, d(n). The

SAMPLE RATE CONVERTERS

↑↑↑↑ L h'(k) ↓↓↓↓ Mh"(k)
x(n) y(m)

INTERPOLATOR DECIMATOR

↑↑↑↑ L
x(n)

h(k) ↓↓↓↓ M
y(m)

Output Sample Rate = fs fsL
M

Example: Convert CD Sampling Rate = 44.1kHz to
 DAT Sampling Rate = 48.0kHz

Use L = 160, M = 147

fout = fs
L
M = 160

147 × 44.1kHz = 48.0kHz

DIGITAL FILTERS

6.36

desired signal, d(n), is subtracted from the filtered signal, y(n), to generate an error
signal. The error signal drives an adaptive algorithm which generates the filter
coefficients in a manner which minimizes the error signal. The least-mean-square
(LMS) or recursive-least-squares (RLS) algorithms are two of the most popular.

Figure 6.45

Adaptive filters are widely used in communications to perform such functions as
equalization, echo cancellation, noise cancellation, and speech compression. Figure
6.46 shows an application of an adaptive filter used to compensate for the effects of
amplitude and phase distortion in the transmission channel. The filter coefficients
are determined during a training sequence where a known data pattern is
transmitted. The adaptive algorithm adjusts the filter coefficients to force the
receive data to match the training sequence data. In a modem application, the
training sequence occurs after the initial connection is made. After the training
sequence is completed, the switches are put in the other position, and the actual
data is transmitted. During this time, the error signal is generated by subtracting
the input from the output of the adaptive filter.

Speech compression and synthesis also makes extensive use of adaptive filtering to
reduce data rates. The linear predictive coding (LPC) model shown in Figure 6.47
models the vocal tract as a variable frequency impulse generator (for voiced portions
of speech) and a random noise generator (for unvoiced portions of speech such as
consonant sounds). These these two generators drive a digital filter which in turn
generates the actual voice signal.

ADAPTIVE FILTER

ADAPTIVE
N-TAP

FIR FlLTER
∑∑∑∑

ADAPTIVE
ALGORITHM

h(k),
Filter
Coefficients

N

x(n)

Input Signal

d(n)

Desired Signal

–

Error
Signal

(LMS, RLS)

y(n)

+

DIGITAL FILTERS

6.37

Figure 6.46

Figure 6.47

DIGITAL TRANSMISSION
USING ADAPTIVE EQUALIZATION

ENCODER,
MODULATOR,

FILTER

TRAINING
SEQUENCE

DAC ANALOG
FILTER

TRANSMISSION
CHANNEL
Adds Noise,

Amplitude and
Phase Distortion

ANALOG
FILTERADC

DECODER,
DEMODULATOR,

FILTER

ADAPTIVE
FILTER

ADAPTIVE
ALGORITHM

∑∑∑∑
TRAINING

SEQUENCE

Error

N
h(k)

TRANSMIT
DATA

RECEIVE
DATA

+ –

LINEAR PREDICTIVE CODING (LPC)
MODEL OF SPEECH PRODUCTION

LUNGS

PHARYNX MOUTH
(Tongue & Lips)

NOSE

LARYNX
(Vocal Cords)

VELUM

IMPULSE
TRAIN

GENERATOR

RANDOM
NOISE

GENERATOR

TIME-VARYING
DIGITAL
FILTER

Voiced

GAIN

PITCH
PERIOD

Unvoiced

DIGITAL FILTERS

6.38

The application of LPC in a communication system such as GSM is shown in Figure
6.48. The speech input is first digitized by a 16-bit ADC at a sampling frequency of
8kSPS. This produces output data at 128kBPS which is much too high to be
transmitted directly. The transmitting DSP uses the LPC algorithm to break the
speech signal into digital filter coefficients and pitch. This is done in 20ms windows
which has been found to be optimum for most speech applications. The actual
transmitted data is only 2.4kBPS which represents a 53.3 compression factor. The
receiving DSP uses the LPC model to reconstruct the speech from the coefficients
and the excitation data. The final output data rate of 128kBPS then drives a 16-bit
DAC for final reconstruction of the speech data.

Figure 6.48

The digital filters used in LPC speech applications can either be FIR or IIR,
although all-pole IIR filters are the most widely used. Both FIR and IIR filters can
be implemented in a lattice structure as shown in Figure 6.49 for a recursive all-
pole filter. This structure can be derived from the IIR structure, but the advantage
of the lattice filter is that the coefficients are more directly related to the outputs of
algorithms which use the vocal tract model shown in Figure 6.47 than the
coefficients of the equivalent IIR filter.

The parameters of the all-pole lattice filter model are determined from the speech
samples by means of linear prediction as shown in Figure 6.50. Due to the non-
stationary nature of speech signals, this model is applied to short segments
(typically 20ms) of the speech signal. A new set of parameters is usually determined
for each time segment unless there are sharp discontinuities, in which case the data
may be smoothed between segments.

LPC SPEECH COMPANDING SYSTEM

16-Bit
ADC PRE-EMPHASIS COEFFICIENT

AND PITCH
WINDOWING

(20ms)

fs = 8kSPS

Speech
Input

128kBPS

2.4kBPS

s(n) = ΣΣΣΣ ak s(n – k) + G • x(n)
k = 1

P

16-Bit
DAC

Speech
Output

128kBPS
Speech
Output

All-Pole
Filter

Gain Excitation

TRANSMITTING DSP

RECEIVING DSP

Data Rate Reduction Factor = 53.3

fs = 8kSPS

DIGITAL FILTERS

6.39

Figure 6.49

Figure 6.50

ALL POLE LATTICE FILTER

z–1 z–1 z–1

k1–k1k2–k2kM–kM

XM(n)

uM(n) u2(n) u1(n)

y(n)

EXCITATION
INPUT

SPEECH
OUTPUT

ESTIMATION OF LATTICE FILTER
COEFFICIENTS IN TRANSMITTING DSP

ΣΣΣΣ

ADAPTIVE
ALGORITHM

ADAPTIVE
FIR

PREDICTOR
Z–1

+

–

COEFFICIENTS

SPEECH
SAMPLES

ERROR
SIGNAL

DIGITAL FILTERS

6.40

REFERENCES

1. Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing, Second Edition, 1999, California Technical Publishing,
P.O. Box 502407, San Diego, CA 92150. Also available for free download at:
http://www.dspguide.com or http://www.analog.com

2. C. Britton Rorabaugh, DSP Primer, McGraw-Hill, 1999.

3. Richard J. Higgins, Digital Signal Processing in VLSI, Prentice-Hall,
1990.

4. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-
Hall, 1975.

5. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, Prentice-Hall, 1975.

6. John G. Proakis and Dimitris G. Manolakis, Introduction to Digital
Signal Processing, MacMillian, 1988.

7. J.H. McClellan, T.W. Parks, and L.R. Rabiner, A Computer Program
for Designing Optimum FIR Linear Phase Digital Filters, IEEE
Trasactions on Audio and Electroacoustics, Vol. AU-21, No. 6,
December, 1973.

8. Fredrick J. Harris, On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform, Proc. IEEE, Vol. 66, No. 1, 1978 pp. 51-83.

9. Momentum Data Systems, Inc., 17330 Brookhurst St., Suite 140,
Fountain Valley, CA 92708, http://www.mds.com

10. Digital Signal Processing Applications Using the ADSP-2100
Family, Vol. 1 and Vol. 2, Analog Devices, Free Download at:
http://www.analog.com

11. ADSP-21000 Family Application Handbook, Vol. 1, Analog Devices,
Free Download at: http://www.analog.com

12. B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall,
1985.

13. S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice-Hall, 1996.

14. Michael L. Honig and David G. Messerschmitt, Adaptive Filters -
Structures, Algorithms, and Applications, Kluwer Academic Publishers,
Hingham, MA 1984.

15. J.D. Markel and A.H. Gray, Jr., Linear Prediction of Speech, Springer-
Verlag, New York, NY, 1976.

http://www.dspguide.com/
http://www.analog.com/

DIGITAL FILTERS

6.41

16. L.R. Rabiner and R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, 1978.

DIGITAL FILTERS

6.42

