技术文件

技术文件名称: LT-Easy2812 开发板 eCAN 和 ADC 实 验手册 技术文件编号: <V1.0> 版 本: <V1.0>

拟	制	叶红渝
审	核	张勇
批	准	

力天电子 <u>www.LT430.com</u>

修改记录

文件编号	版本号	拟制人/ 修改人	拟制/修改日期	更改理由	主要更改内容 (写要点即可)
	1.0	叶红渝	2011-6-02		

A.

1、eCAN 发送数据实验

实验目的:初步了解 DSP2812 内部 eCAN 发送数据的操作。

实验现象: 上位机软件 CAN 分析仪将接收的数据格式显示出来。

实验原理:通过对 eCAN 相关寄存器的配置,启动 eCAN 的传输操作,数据就会通过 CAN 接口传输出来,通信的波特率为 1Mbps,帧格式采用扩展帧,邮箱通过邮箱 0 作为发送邮箱,第一次发送的数据为 0x0123456789ABCDEF,之后循环发送字符串"LiTian",通过 CAN 模块的解析之后,上传到上位机软件,由软件将相关数据显示在界面中。

注意事项:本实验需要在开发板外围接 CAN 模块,同时需要上位机软件才 能实现最终显示的结果

实验代码:

```
主程序代码如下:
```

```
void main(void)
```

{

unsigned int i,j,k;

unsigned char senddata[]="LiTian";

InitSysCtrl(); // 系统初始化子程序,在DSP281x_sysctrl.c中

```
/*初始化 ecan 寄存器*/
```

InitECan();

```
MessageSendCount = 0;
```

MessageReceiveCount = 0;

i=0;

```
for(;;)
```

{

ECanaShadow.CANTRS.all=ECanaRegs.CANTRS.all;

ECanaShadow.CANTRS.all=0;

ECanaShadow.CANTRS.bit.TRS0=1;

ECanaRegs.CANTRS.all=ECanaShadow.CANTRS.all;

do

{

ECanaShadow.CANTA.all=ECanaRegs.CANTA.all; }while(ECanaShadow.CANTA.bit.TA0!=1);

ECanaShadow.CANTA.bit.TA0=1;

ECanaRegs.CANTA.all=ECanaShadow.CANTA.all;

MessageSendCount++;

//在这里设断点,观察

ECanaMboxes.MBOX0.MDL.all =senddata[i]; ECanaMboxes.MBOX0.MDH.all =senddata[i+1];

i=i+2;

if(i>5)

```
i=0;
```

```
for(k=0;k<100;k++)
```

```
for(j=0;j<10000;j++);
```

```
eCAN 发送数据初始化代码如下: void InitECan(void)
```

{

ł

ł

struct ECAN_REGS ECanaShadow; EALLOW;

LT-Easy2812 开发板 eCAN 和 ADC 实验手册

//配置 GPIO 引脚工作在 eCAN 功能 GpioMuxRegs.GPFMUX.bit.CANRXA_GPIOF7=1; GpioMuxRegs.GPFMUX.bit.CANTXA_GPIOF6=1;

//配置 eCAN 的 RX 和 TX 分别为 eCAN 的接收和发送引脚 ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all; ECanaShadow.CANTIOC.bit.TXFUNC = 1; ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all; ECanaShadow.CANRIOC.bit.RXFUNC = 1; ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all; EDIS;

EALLOW;

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; //工作在正常模式 ECanaShadow.CANMC.bit.STM = 0; //工作在 eCAN 模式 ECanaShadow.CANMC.bit.SCB = 1; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; EDIS;

//初始化所有主设备控制区域为 0, 控制区域所有的位都初始化为 0 ECanaMboxes.MBOX0.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX1.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX2.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX3.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX4.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX5.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX5.MSGCTRL.all = 0x00000000;

ECanaMboxes.MBOX7.MSGCTRL.all = 0x00000000: ECanaMboxes.MBOX8.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX9.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX10.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX11.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX12.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX13.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX14.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX15.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX16.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX17.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX18.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX19.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX20.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX21.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX22.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX23.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX24.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX25.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX26.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX27.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX28.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX29.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX30.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX31.MSGCTRL.all = 0x00000000;

//清除所有的 TA 位

ECanaRegs.CANTA.all = 0xFFFFFFF;

//清除所有的 RMP 位

ECanaRegs.CANRMP.all = 0xFFFFFFF;

ECanaRegs.CANAA.all= 0xFFFFFFF; ECanaRegs.CANGIF0.all=0xFFFFFFFF;

//配置时钟参数

EALLOW;

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;

ECanaShadow.CANMC.bit.CCR = 1;

ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;

EDIS;

//CPU 请求向 CANBTC 和 CANGAM 写配置信息,该位置1 后必须等到

CANED.CCE 为1,才能

```
//对 CANBTC 进行操作。
```

do

{

ECanaShadow.CANES.all = ECanaRegs.CANES.all;

}

while(ECanaShadow.CANES.bit.CCE != 1);

EALLOW;

//(BRPREG+1)=10 , CAN 时钟为 15MHz

ECanaShadow.CANBTC.bit.BRPREG = 9; //15

//CAN 通信的波特率为 1MHz

ECanaShadow.CANBTC.bit.TSEG2REG = 2;

ECanaShadow.CANBTC.bit.TSEG1REG = 10;

ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;

//CPU 请求正常操作

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;

ECanaShadow.CANMC.bit.CCR = 0;


```
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
do
{
ECanaShadow.CANES.all = ECanaRegs.CANES.all;
}
                                       //等待 CCE 位清零
while(ECanaShadow.CANES.bit.CCE != 0);
//屏蔽所有邮箱,在写 MSGID 之前要完成该操作
ECanaRegs.CANME.all = 0;
ECanaShadow.CANME.all=ECanaRegs.CANME.all;
ECanaShadow.CANME.bit.ME0=0;
ECanaRegs.CANME.all=ECanaShadow.CANME.all;
//设置发送邮箱的 ID 号, 扩展帧
ECanaMboxes.MBOX0.MSGID.all = 0x80C80000;
//邮箱0为TX
ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
ECanaShadow.CANMD.bit.MD0 =0;
ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;
//数据长度 8个 BYTE
ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
```

//设置发送优先级

// ECanaMboxes.MBOX0.MSGCTRL.bit.TPL = 0;

//没有远方应答帧被请求

ECanaMboxes.MBOX0.MSGCTRL.bit.RTR = 0;

//向邮箱 RAM 区写数据

ECanaMboxes.MBOX0.MDL.all = 0x01234567;

ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;

//邮箱使能 Mailbox0

ECanaShadow.CANME.all = ECanaRegs.CANME.all;

ECanaShadow.CANME.bit.ME0 =1;

ECanaRegs.CANME.all = ECanaShadow.CANME.all;

}

上位机软件 CAN 分析仪显示的结果如下图所示

USBEAN分析仪v1.0	05			
耑口: COM4	▼ 帧格式:数据帧 ▼] mtīīD: 00000000 ≹	数据: 00 01 02 03 04 05 0	06 07 发送单帧
刷新 打开 关	湖 添加 删除	清空 间隔时间:	1000 ms 发送多帧	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
AN波特率: 1Mbps	▼ 发送序号 帧类型	!	帧ID 数据	
帧类型: 」扩展帧	•			
を波江: 00000000	<u> </u>			
昇蔽ID: 00000000)			
CAN设置	清空	暂停	(续) 保存	退出
序号 传输方向	时间标识 帧类型	帧格式 帧ID	数据长度数据	
、I 2 3 4 5 3 7 3 9 10 11 12 3 4 5 5 7 3 9 10 11 12 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 13 14 15 16 11 11 11 11 11 11 11 11 11 11 11 11	11:54:06:0687 数据帧 11:54:06:0765 数据帧 11:54:06:0843 数据帧 11:54:06:0921 数据帧 11:54:07:0015 数据帧 11:54:07:0015 数据帧 11:54:07:0250 数据帧 11:54:07:0250 数据帧 11:54:07:0484 数据帧 11:54:07:0484 数据帧 11:54:07:0652 数据帧 11:54:07:0652 数据帧 11:54:07:0652 数据帧 11:54:07:0682 数据帧 11:54:07:0890 数据帧 11:54:07:0890 数据帧 11:54:07:0890 数据帧 11:54:07:0890 数据帧 11:54:07:0890 数据帧 11:54:07:0890 数据帧	b) (REK) 00 (8000) 扩展帧 00 (8000) 1 (8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

从图中可以看出,第一帧接收到的数据是初始值 0x0123456789ABCDEF;第二 帧为 0x0000004c00000069,其中 0x4c 是字母 L 的 ASCII 码, 0x69 是字母 i 的 ASCII

码; 第三帧为 0x000000540000069, 其中 0x54 是字母 T 的 ASCII 码, 0x69 是 字母 i 的 ASCII 码; 第四帧为 0x0000061000006e, 其中 0x61 是字母 a 的 ASCII 码, 0x6e 是字母 n 的 ASCII 码; 2~4 帧连接起来就是字符串"LiTian", 之后的 数据帧就是 2~4 帧的循环出现, 结果完全和实验要求一致。

2、eCAN 接收数据实验

实验目的:初步了解 DSP2812 内部 eCAN 接收数据的操作。

实验现象:在 CCS 的数据窗口显示 eCAN 接收的数据。

实验原理:通过对 eCAN 相关寄存器的配置,启动 eCAN 的中断。通信的 波特率为 1Mbps,帧格式采用扩展帧,邮箱采用 16 号邮箱作为接收邮箱,并采 用中断的方式来接收数据,中断使用 ECAN0INT 中断线。CAN 调试器给 DSP 发送的数据是 "00 01 02 03 04 A5 B6 C7",然后在中断服务子程序出设置断点,通过 CCS 的数据窗口观察邮箱 16 所接收到的数据。

注意事项:本实验需要在开发板外围接 CAN 模块,同时需要上位机软件才能实现实验描述的要求。

实验代码:

```
主程序代码如下:
```

void main(void)

{

```
/*初始化系统*/
InitSysCtrl();
```

```
/*初始化 ecan 寄存器*/
InitECan();
```

//使能 PIE 中断 PieCtrlRegs.PIEIER9.bit.INTx5 = 1;

```
//使能 CPU 中断
IER |= M_INT9;
```

EINT; //开全局中断 **ERTM**; //开实时中断

for(;;) {

{

}

} eCAN 接收数据初始化代码如下: void InitECan(void)

struct ECAN_REGS ECanaShadow;

//配置 GPIO 引脚工作在 eCAN 功能 EALLOW; GpioMuxRegs.GPFMUX.bit.CANRXA_GPIOF7=1; GpioMuxRegs.GPFMUX.bit.CANTXA_GPIOF6=1;

//配置 eCAN 的 RX 和 TX 分别为 eCAN 的接收和发送引脚 ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all; ECanaShadow.CANTIOC.bit.TXFUNC = 1; ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all; ECanaShadow.CANRIOC.bit.RXFUNC = 1; ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all; EDIS;

EALLOW;

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; //工作在非测试模式 ECanaShadow.CANMC.bit.STM = 0; //工作在 ecan 模式 ECanaShadow.CANMC.bit.SCB = 1; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;

ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; EDIS;

//初始化所有主设备控制区域为0,控制区域所有的位都初始化为0 ECanaMboxes.MBOX0.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX1.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX2.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX3.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX4.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX5.MSGCTRL.all = 0x0000000; ECanaMboxes.MBOX6.MSGCTRL.all = 0x0000000; ECanaMboxes.MBOX7.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX8.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX9.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX10.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX11.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX12.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX13.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX14.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX15.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX16.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX17.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX18.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX19.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX20.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX21.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX22.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX23.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX24.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX25.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX26.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX27.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX28.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX29.MSGCTRL.all = 0x00000000;

ECanaMboxes.MBOX30.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX31.MSGCTRL.all = 0x00000000;

//清除所有的 TA 位 ECanaRegs.CANTA.all = 0xFFFFFFFF;

//清除所有的 RMP 位

ECanaRegs.CANRMP.all = 0xFFFFFFF;

//清除所有的中断标志位

ECanaRegs.CANGIF0.all = 0xFFFFFFF;

ECanaRegs.CANGIF1.all = 0xFFFFFFF;

//配置时钟参数

EALLOW;

ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;

ECanaShadow.CANMC.bit.CCR = 1;

ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; EDIS;

//CPU 请求向 CANBTC 和 CANGAM 写配置信息,该位置 1 后必须等 到 CANED.CCE 为 1,才能

//对 CANBTC 进行操作。

```
do
```

{__

ECanaShadow.CANES.all = ECanaRegs.CANES.all;

}

while(ECanaShadow.CANES.bit.CCE != 1);

EALLOW;

//(BRPREG+1)=10 , CAN 时钟为 15MHz

ECanaShadow.CANBTC.bit.BRPREG = 9;

//CAN 通信的波特率为 1MHz ECanaShadow.CANBTC.bit.TSEG2REG = 2; ECanaShadow.CANBTC.bit.TSEG1REG = 10; ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all; //CPU 请求正常操作 ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.CCR = 0; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; EDIS: do { ECanaShadow.CANES.all = ECanaRegs.CANES.all; } while(ECanaShadow.CANES.bit.CCE != 0): //屏蔽所有邮箱,在写 MSGID 之前要完成该操作 ECanaRegs.CANME.all = 0; //设置接收邮箱的 ID, 扩展帧 ECanaMboxes.MBOX16.MSGID.all = 0x80C80000; //设置邮箱 16 为接收邮箱 ECanaShadow.CANMD.all = ECanaRegs.CANMD.all; ECanaShadow.CANMD.bit.MD16 =1; ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

//数据长度 8个 BYTE

ECanaMboxes.MBOX16.MSGCTRL.bit.DLC = 8;

//没有远方应答帧被请求*/

ECanaMboxes.MBOX16.MSGCTRL.bit.RTR = 0;

//邮箱使能

ECanaShadow.CANME.all = ECanaRegs.CANME.all;

ECanaShadow.CANME.bit.ME16 =1;

ECanaRegs.CANME.all = ECanaShadow.CANME.all;

//邮箱中断使能

EALLOW;

ECanaRegs.CANMIM.all = 0xFFFFFFF;

//邮箱中断将产生在 ECAN0INT

ECanaRegs.CANMIL.all = 0;

ECanaRegs.CANGIF0.all = 0xFFFFFFF;

//ECAN0INT 中断请求线被使能

ECanaRegs.CANGIM.bit.I0EN = 1; EDIS;

}

将 DSP2812 上的 CAN 接口同 CAN 调试器的接口通过导线连接好,然后运行此程序,在中断服务子程序的最后一行代码处设置断点,然后设置 CAN 调试工具,其软件的参数设置如图下图,然后点击"发送"按钮。

USBCA	N分析仪v1	.05								X
端口:	COM4	▼ № ¥61	b格式: 数 沥tm	医帧 ▼	帧ID: 🏼		ਲ਼据: 00 0	1 02 03 04 A5 B 安洋名帖	6 C7 援追	送单帧 ABOL
CAN波特率	z: 1Mbps		发送序号			「町扁町」町・	1000 帧ID	ms数据		ITIL
帧类型:	扩展帧	-								
滤波ID: 屏蔽ID:	000000	00								
C.	AN设置		1 [清空	1	暂停	维	续	保存	退出	
序号 1	装输方向	 时间标	 识	帧类型	帧格式	帧ID	数据长	度数据		
0 2	发送	10:48:	19:0031	数据帧	扩展帧	00C80000) 8	00 01 02 0	3 04 A5 B6 C7	

CAN 调试工具将数据发出以后, DSP 的程序将在中断服务子程序的断点处暂停下来, 说明 DSP 接收到了数据。

然后将变量 Rec_1 和 Rec_h 添加到 Watch Window 中, 观察 DSP 所接收到的数据,结果如下图所示。

从图中可以看出,变量 Rec_l 的值是 0x00010203,变量 Rec_h 的值是 0x04A5B6C7,结果完全正确。

3、ADC 数据采集实验

实验目的:初步了解 DSP2812 内部 ADC 采集信号的操作。

实验现象:将 AD 转换的结果以二进制的形式通过 8 位 LED 显示出来。

实验原理:采用顺序采样的模式对 ADCINA0 和 ADCINB0 接口的模拟信号 进行采样,采用软件置位的方式启动采样。在采样中断函数中读出采样的结果,同时将 ADCINA0 的采样结果高 8 位的二进制形式显示在 8 位 LED 上。

注意事项:本实验中采集的信号是直接由LT-Easy2812 开发板提供的,开关SW0,SW1 默认是拨到右侧,此时 SW2 如果拨到右侧,则 ADCINA0 和 ADCINB0 接口输入的是一个固定信号,分别为 2.2v 和 1.1v,SW2 如果拨到左侧,则 ADCINA0 和 ADCINB0 接口输入信号由电位器 RP1 调节控制。

实验代码:

主程序:

void main(void)

{

InitSysCtrl(); // 系统初始化子程序,在DSP281x_sysctrl.c中

Init_LED();

InitAdc(); //初始化 AD 模块

PieCtrlRegs.PIEIER1.bit.INTx6 =1; //使能 PIE 模块中的 AD 采样中断

IER|=M_INT1; //开 CPU 中断

EINT; //使能全局中断 ERTM; //使能实时中断

while(1);

}

〇カ天

中国	断处理程序:			
	interrupt void ADCINT_ISR(void) // ADC			
{				
	//读取转换结果			
	ADC_Result[0]=((float)AdcRegs.ADCRESULT0)*3.0/65520.0;	/	/ 保	存
AD	CINA0 的结果			
	ADC_Result[1]=((float)AdcRegs.ADCRESULT1)*3.0/65520.0;	/	/ 保	存
AD	CINA1 的结果	C	$\langle \rangle$	
/*	ADC_Result[2]=((float)AdcRegs.ADCRESULT2)*3.0/65520.0;		/保	存
AD	CINA2 的结果			
	ADC_Result[3]=((float)AdcRegs.ADCRESULT3)*3.0/65520.0;	1	/ 保	存
AD	CUNA3 的结果			
	ADC_Result[4]=((float)AdcRegs.ADCRESULT4)*3.0/65520.0;	/	/ 保	存
AD	CINA4 的结果			
	ADC_Result[5]=((float)AdcRegs.ADCRESULT5)*3.0/65520.0;	1	/ 保	存
AD	CINA5 的结果			
	ADC_Result[6]=((float)AdcRegs.ADCRESULT6)*3.0/65520.0;	1	/ 保	存
AD	CINA6 的结果			
	ADC_Result[7]=((float)AdcRegs.ADCRESULT7)*3.0/65520.0;	/	/ 保	存
AD	CINA7 的结果			
	ADC_Result[8]=((float)AdcRegs.ADCRESULT8)*3.0/65520.0;	1	/ 保	存
AD	CINB0 的结果			
	ADC_Result[9]=((float)AdcRegs.ADCRESULT9)*3.0/65520.0;	1.	/ 保	存
AD	CINB1 的结果			
	ADC_Result[10]=((float)AdcRegs.ADCRESULT10)*3.0/65520.0;	//	保	存
AD	CINB2 的结果			
	ADC_Result[11]=((float)AdcRegs.ADCRESULT11)*3.0/65520.0;	//	保	存
AD	CINB3 的结果			
	ADC_Result[12]=((float)AdcRegs.ADCRESULT12)*3.0/65520.0;	//	保	存
AD	CINB4 的结果			
	ADC_Result[13]=((float)AdcRegs.ADCRESULT13)*3.0/65520.0;	//	保	存

ADCINB5 的结果

ADC_Result[14]=((float)AdcRegs.ADCRESULT14)*3.0/65520.0; // 保 存 ADCINB6 的结果

ADC_Result[15]=((float)AdcRegs.ADCRESULT15)*3.0/65520.0; // 保 存 ADCINB7 的结果

*/

ADC_LED(AdcRegs.ADCRESULT0);

ADC_LED(AdcRegs.ADCRESULT0);

PieCtrlRegs.PIEACK.bit.ACK1=1; //响应 PIE 同组中断。

AdcRegs.ADCST.bit.INT_SEQ1_CLR=1; //清除 AD 中断的标志位

AdcRegs.ADCTRL2.bit.SOC_SEQ1=1; //立即启动下一次转换

EINT; //使能全局中断

}

4、ADC 校正实验

实验目的:初步了解 DSP2812 内部 ADC 采集校正的操作。

实验现象: 在 CCS 的数据窗口中可以看到计算出来的校正的增益值和偏移 值。

实验原理:通过 DSP2812 内部 12 位的 ADC 模块,在实际的应用过程中, 由于外界干扰或者噪声等因素,采样值和实际值之间存在一定的误差。为了减小 误差,保证采样结果结果的精确,采用的校正的算法可以比较好的达到要求。 AD 转换的曲线如下图所示:

从上图可以看出,理想的 12 位 ADC 模拟量输入 X 和数字量 Y 之间的关系 应该是:

Y=mi*X

理想曲线上有有一个固定点坐标是(3.0,4095),因此可以理想情况下增益为:

mi=4095/3.0=1365

实际应用中是存在增益误差和偏移误差的,假设实际增益为 ma,实际偏移量 为 b,则模拟量与数字量之间的关系为:

Y=ma*X+b

这个式子是二元一次方程,要得出未知量 ma,b 的值,只需要两个这样的方程组成一个二元一次方程组,就可以求解

Y1=ma*X1+b

Y2=ma*X2+b

其中 X1, X2 为已知的输入模拟量,Y1,Y2 输出的数字量,有这个方程组可以推导出

ma= (Y2 - Y1)/ (X2 - X1)

b=(X2Y1 - X1Y2)/ (X2 -X1)

本实验中,在 ADCINA0, ADCINB 接入固定的模拟量分别为 X2, X1, 启 动 ADC,就能得到数字量 Y2, Y1, 代如上面的公式, 就可以得到增益 ma 和偏移 b

换后电压		输入电压	
Output0	ADCINAO		参考电压1 Input0
Output1	ADCINA1		Inputl
Output2	ADCINA2	2	Input2
Output3	ADCINA3		Input3
Output4	ADCINA4		Input4
Output5	ADCINA5		Input5
Output6	ADCINA6	-	Input6
Output7	ADCINA7	<u>.</u>	Input7
Output8	ADCINBO		参考电压2 Input8 Input9
Output9	ADCINB1 ADCIND2		Input 10
Output11	ADCIND2 ADCIND2		Input11
Output12	ADCINDO	639 424	Input12
Output13	ADCINES		Input13
Output14	ADCINB6	2	Input14
Output15	ADCINB7		Input15
	ADCLO		
	10000		
_	ADCLO	\bigtriangledown	

在 LT-Easy2812 开发板中 J2, J3 所对应的开关丝印表示为 SW0, SW1。当

开关 SW0, SW1 闭合时,参考电压就加在了模拟输入接口上,此时校正功能使能,其他的 14 路通道可通过程序自由配置;当开关断开时,校正功能禁止,此时 16 路通道可通过程序自由配置。

本实验中, AD 采样频率为 10K, 采样模式采用顺序采样。利用通用定时器 T1 的周期中断事件来启动 AD 转换。ADCINA0 和 ADCINB0 为参考电平, 实际的电压值为 2.0 和 1.0, 由于每个板子的具体特性稍有不同,请用万用 表自行测量参考电压值。本程序对 ADCINA0、ADCINB02 个通道进行连续 10 次的采样, 然后对各个通道的 10 个采样值进行排序、滤波,最后求取平均值。然后由 ADCINA0 和 ADCINB0 通道的值计算求得 CalGain 和 CalOffset。

注意事项:本实验中的校正参考电压是直接由LT-Easy2812 开发板提供的,校正的过程中开关 SW0, SW1, SW2 必须都拨到右侧(默认是在右侧),此时ADCINA0 和 ADCINB0 接口输入的是一个固定信号,分别为 2.2v 和 1.1v,作为校准的输入。

实验代码:

主程序:

void main(void)

{

int i;

```
InitSysCtrl(); //初始化系统函数
InitEv();
```

InitAdc();

InputA0=2.2;

InputB0=1.1;

OutputA0=0;

OutputB0=0;

for(i=0;i<10;i++)


```
{
  ADC_ResultA0[i]=0;
  ADC_ResultB0[i]=0;
}
SampleCount=0;
                                              2.00
PieCtrlRegs.PIEIER1.bit.INTx6 =1;
PieCtrlRegs.PIEIER2.bit.INTx4=1;
IER|=M_INT1; //开 CPU 中断
IER|=M_INT2;
EINT;
ERTM;
EvaRegs.T1CON.bit.TENABLE=1;
                               //启动 T1 计数
for(;;)
{
}
中断处理程序
interrupt void ADCINT_ISR(void)
                                 // ADC
//读取转换结果
ADC_Result[0]=((float)AdcRegs.ADCRESULT0)*3.0/65520.0; // 保存
```

ADCINA0 的结果

}

{

〇力天

```
ADC_Result[1]=((float)AdcRegs.ADCRESULT1)*3.0/65520.0; // 保存ADCINA1的结果
```

```
ADC_ResultA0[SampleCount]=ADC_Result[0];
```

```
ADC_ResultB0[SampleCount]=ADC_Result[1];
```

```
SampleCount++; //采样计数器计数
```

```
if(SampleCount==10) //采样十次之后,需要进行滤波处理
```

```
{
```

int i;

i=0;

OutputA0=0; OutputB0=0;

sequence(ADC_ResultA0,10); //对采样十次得到的数据进行排序 sequence(ADC_ResultB0,10);

for(i=3;i<7;i++)

OutputA0=OutputA0+ADC_ResultA0[i]; //中值滤波法 OutputB0=OutputB0+ADC_ResultB0[i]; //取中间的4个数据进行求

和

}

SampleCount=0; //清采样计数器, 进入新的连续十次的采样

OutputA0=OutputA0/4; //计算 4 个采样数据的平均值 OutputB0=OutputB0/4;

```
CalGain=(InputA0-InputB0)/(OutputA0-OutputB0);
```

//AD 校正算法用于计算的增益,

CalGain=(InputH-InputL)/(OutputH-OutputL)

CalOffset=(InputB0*OutputA0-InputA0*OutputB0)/(OutputA0-OutputB0);

//AD 校正算法用于计算的偏移,

CalOffset=(InputH*OutputL-InputL*OutputH)/(OutputH-OutputL)

```
PieCtrlRegs.PIEACK.bit.ACK1=1; //响应 PIE 同组中断
AdcRegs.ADCST.bit.INT_SEQ1_CLR=1; //清除 AD 中断的标志位
AdcRegs.ADCTRL2.bit.SOC_SEQ1=1; //立即启动下一次转换
EINT; //使能全局中断
```

```
}
```

}

可以在程序中设置断点,如下图所示:

然后将变量CalGain 和CalOffset 添加到数据观察窗口中,当程序执行到断点处时,可以观察到计算出来的CalGain 和CalOffset 的值,如下图所示:

LT-Easy2812 开发板 eCAN 和 ADC 实验手册

Name	Value	:	Radix
🛛 🖗 CalGain	0.9983379	i	float
🖗 CalOffset	-0.03803185	t	float

col HAD.