Pointers On C

|nstructor’ s Guide

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

Pointers on C—Instructor’s Guide i

Contents
F N O U o s - AT 1
BaSIC CONCEPLS ...c.veveeeiieiesieste ettt nne s 7
D S 11
SEBLEMIENLSeeeeeieeet ettt st b e b e e b bt sae e e e e ene e e seenns 15
Operators and EXPreSSIONScooirerreireerinenseiesesessessesese s se e seesnesens 23
0] 01 (= £ TPTSTRRN 29
0o o S 37
(= Y2 T 43
Strings, Characters, and BYLESccocceeveiiieeese et see s 55
Structures and UNIONScccooiiiiieeseeie e sneenee 69
Dynamic Memory AlIOCELONcccceeveiiiieeese st 75
Using Structures and POINLENSc.coviiiiriiieieese e 79
Advanced PoIiNter TOPICS ...ocveieiiiieiesie ettt s e 87
THE PrEPrOCESSONocueiuiiiiiieieiieieste ettt b et b e 93
INPUL/OULPUL FUNCLIONSveiieciecee ettt e sneas 95
SEANAAIT LIDIAIY oot 119
ClassiC ADSLraCt Data TYPES ..cveveeeeeeeienieeieeeerie sttt ee e 129
RUNEIME ENVIFONMENT ..ottt 145

1

A Quick Start

1.1 Questions
1. To make the program easier to read, which in turn makes it easier to maintain later.

3. It iseasier to see what a named constant represents, if it is well named, than a literal constant,
which merely displays its value.

"od % %g\n"

6. The programmer can put in subscript checks where they are needed; in places where the sub-
script is aready known to be correct (for example, from having been checked earlier), there is no
overhead expended in checking it again. But the real reason they are omitted is the fact that sub-
scripts are implemented as pointer expressions, which are described in Chapter 8.

7. More characters would be copied than are actually needed; however, the out put _col would be
updated properly, so the next range of characters would be copied into the output array at the
proper place, replacing any extra characters from the preceding operation. The only potential
problem is that the unbounded st r cpy might copy more characters into the output array than it
has room to hold, destroying some other variables.

1.2 Programming Exercises

1. Watch the solutions for proper use of voi d declarations and a reasonable style. The first pro-
gram is no place to begin learning bad habits. The program will compile and run on most sys-
tems without the #i ncl ude statement.

/*
** Print the message "Hello world!" to the standard out put.
*/

#i ncl ude <stdi o. h>

voi d
mai n(void)

Solution 1.1 continued . . .

2 Chapter 1 A Quick Start

{
printf("Hello world!\n");
}
Solution 1.1 hello_w.c
3. Many students will attempt to read the input file line by line, which is unnecessarily complicated.
Other common errors are to forget to initialize the sum to -1, or to declare it an integer rather
than a character. Finally, be sure the variable used to read the characters is an integer; if it isa
character variable, the program will stop on systems with signed characters when the input con-
tains the binary value 0377 (which, when promoted to an integer, is -1 and equal to ECF). Note
that the overflow renders this program nonportable, but we don't know enough yet to avoid it.
/ *

** This program copies its standard i nput to the standard output, and conputes
** a checksum of the characters. The checksumis printed after the input.

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt
mai n(void)
{
i nt C;
char sum = -1;
/*
** Read the characters one by one, and add themto the sum
*/
while((c = getchar()) != ECF){
putchar(c);
sum += c;
}
printf("%\ n", sum);
return EXI T_SUCCESS;
}
Solution 1.3 checksum.c
4. The basis of this program is an array which holds the longest string found so far, but a second
array is required to read each line. The buffers are declared 1001 characters long to hold the
data plus its terminating NUL byte. The only tricky thing is the initialization to prevent garbage
from being printed when the input is empty.
/*
** Reads lines of input fromthe standard i nput and prints the |ongest |ine that
** was found to the standard output. It is assunmed that no line will exceed

Solution 1.4 continued . . .

Pointers on C—Instructor’s Guide 3

** 1000 characters.
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#defi ne MAX_LEN 1001 [* Buffer size for |ongest line */
i nt
mai n(void)
{
char i nput[MAX_LEN];
i nt | en;
char | ongest[MAX LEN];
i nt | ongest | en;
/*
** |nitialize length of the |ongest line found so far.
*/
| ongest len = —1;
/*
** Read input |ines, one by one.
*/
while(gets(input) !'= NULL){
/*
** Get length of this line. |If it is |longer than the previous
** | ongest line, save this |ine.
*/

len = strlen(input);

if(len > longest len){
| ongest _len = |en;
strcpy(|ongest, input);

}

/*
** | f we saved any line at all fromthe input, print it now.
*/
if(longest len >= 0)
puts(| ongest);

return EXIT_SUCCESS;
}

Solution 1.4 longest.c

6. The statements

/*
** Make sure we have an even nunber of inputs ..
*/
if(num%2 !'=0){
puts("Last columm nunber is not paired.");

4

Solution 1.6 continued . . .

/*
* *

* %

*/

voi d

Chapter 1 A Quick Start

exit(EXIT_FAILURE);
}

are removed from the r ead_col um_nunber s function, and the r ear r ange function is
modified as follows. Note that the computation of nchar s is moved after the test that checks
whether the starting column is within the bounds of the input string.

Process a line of input by concatenating the characters fromthe indicated
colums. The output line is then NUL term nated.

rearrange(char *output, char const *input, int const n_col umms,

{

int const colums[])

i nt col ; /* subscript for columms array */
i nt out put _col ; /* output columm counter */
i nt | en; /[* length of input |ine */

len = strlen(input);

out put _col = 0;
/*
** Process each pair of colum nunbers.
*/
for(col = 0; col < n_colums; col += 2){
i nt nchars;
/*
** |f the input line isn't this long or the output array is
** full, we' re done.
*/
if(colums[col] >=len || output_col == MAX_|INPUT - 1)
br eak;
/*
** Conpute how nmany characters to copy.
*/
if(col + 1 < n_colunmms)
nchars = columms[col + 1] — colums[col] + 1;
el se
nchars = len — colums[col + 1];
/*
** |f there isn't roomin the output array, only copy what wll
** fit.
*/

i f(output_col + nchars > MAX INPUT — 1)
nchars = MAX_ | NPUT — out put_col - 1;

/*
** Copy the rel evant data.

Pointers on C—Instructor’s Guide 5

*/
strncpy(output + output _col, input + colums[col], nchars);
out put _col += nchars;

}

output[output _col] = "'\0";

}

Solution 1.6 rearran3.c

2

Basic Concepts

2.1 Questions

1.

The outside comment ends at the end of the first enclosed comment. This makes the variable i
undefined in the rest of the function; the phrase End of comment ed—out code will be a syn-
tax error, and the final closing */ will be illegal.

Advantages:
a When you want to modify a function, it is easy to determine which file it isin.

b. You can safely use longer function names. Depending on the limits of your particular sys-
tem, internal must be distinct from one another somewhere in the first 31 characters or
more, whereas external names must be distinct from one another in the first six characters.

Disadvantages:

a Depending on how powerful your editor is, it may be harder to locate a particular piece of
code in a large file than a small one.

b. Depending on your operating system, the type of editor you are using, and the size of the
file, it may be more time consuming to edit a large file than a small one.

c. If you make a mistake in your editor, it is easy to lose the whole program.

Even if you change only one function, the entire program must be recompiled, which takes
longer than recompiling only the modified function.

e. Itis harder to reuse general purpose functions from the program if they are buried in with
al the code that is specific to that problem.

"\ "Bl under\ 2\ 21 22\ ""
Note that the final pair of questions marks need not be escaped, as the next character does not
form a trigraph.

The preprocessor replaces the comment with a single space, which makes the resulting statement
illegal.

Nothing. There are no conflicts with the C keywords or between the last two identifiers because
they are al differ in the case of their characters.

8 Chapter 2 Basic Concepts

9. The answer will vary from system to system, but on aUNIX system

cc main.c list.c report.c

is one command that does the job.
10. The answer will vary from system to system, but on a UNIX system you would add

—| par se

to the end of the command.

2.2 Programming Exercises

1. The sole purpose of this exercise is to make use of separate compilation, so the hardest thing
about this program is accepting that it is as trivial as it sounds. The main program may also be
implemented with a loop.

/*
** Main programto test the increment and negate functions.
*/

#i ncl ude <stdi o. h>

mai n(void)

{
printf("% %\n", increment(10), negate(10));
printf("% %\n", increment(0), negate(0));
printf("% %\n", increnment(-10), negate(-10));
}
Solution 2.1a main.c
/*
** A function to increment a value and return it.
* [
i nt
increment (int val ue)
{
return val ue + 1;
}
Solution 2.1b increment.c
/*
** A function to negate a value and return it.
*/
i nt

negate(int val ue)

Solution 2.1c continued . . .

Pointers on C—Instructor’s Guide 9

{
}

Solution 2.1c negate.c

return —val ue;

Data

3.1 Questions

Note to instructor: The first few questions ask the students to investigate some behaviors on their
own implementation. The answers given describe what the Standard says about each situation;
this is far more detailed than students are likely discover on their own. You may wish to use
some of the material in these answers in your presentation.

1. Depends; look in <l'i m ts. h> for the definitions. The location of this include file may vary; on
UNIX systems it is typically found in the directory / usr/i ncl ude. For Borland compilers, look
in the i ncl ude directory found where the compiler was installed.

Depends; look in <f | oat . h> for the definitions. See above for the location of this file.

Many compilers will give a warning message. The Standard defines the runtime behavior
roughly this way: if the value to be assigned is small enough to fit in the shorter variable, its
value is preserved; otherwise, it is implementation dependent. The carefully worded description
implies that the implementation may simply discard the high-order bits that don't fit, which on
most machines gives the most efficient object code. This is obviously not portable.

5. When you compile it, you may get a warning message. The runtime behavior is defined in much
the same manner as for integers: If the value fits in the smaller variable, it works; otherwise it is
implementation dependent. With floating-point values, though, a value “doesn’t fit” only if its
exponent is larger than the shorter type can hold. If the exponent fits, there is still the mantissa,
which might have more significance than the shorter type can maintain. In this case, the value is
replaced with nearest value that can be represented in the shorter variable; it is implementation
dependent whether this rounds, truncates, or does something else.

6. enum Change { PENNY = 1, NICKEL = 5, DI ME = 10,

QUARTER = 25, HALF_DOLLAR = 50, DOLLAR = 100 };

Though the problem did not require it, this declaration gives each symbol a value indicating its
actua worth. This would facilitate arithmetic on these values.
Depends on the implementation; consult the documentation.

It is needed only for characters, and even then only on machines where the default character is
unsigned. It is alowed in other contexts (e.g., si gned i nt) only for consistency.

11

12

Chapter 3 Data

12.
13.

14.

15.

16.
17.
18.
19.
20.
22.

23.

24,

There is no difference.

The left declaration still does what it previously did, but the statements on the right are in error;
you cannot assign to a constant variable.

True, except when a nested block declares another variable with the same name, which hides the
earlier variable and makes it inaccessible from within the nested block.

False. The only automatic variables are those with block scope, and these cannot ever be
accessed by name from other blocks.

No, that changes its storage class, but not its scope; the answer is still false.

None is needed.

No; it still has internal linkage, so every function that comes later in the file may access it.
extern int x;

Yes;, now there is no declaration that will enable you to access x from a different source file.

Inside: the variable is automatic, it is reinitialized each time the function is called, its scope is
limited to the function, it has no linkage. Outside: the variable is static, it is initialized only once
before the program begins to run, it has file scope, and externa linkage.

The trick to this one is to realize that function y can be put ahead of x in the file; after that, the
rest is straightforward. Watch for assignment statements though; the problem specifies no exe-
cutable statements in the functions.

static char b = 2;
voi d
y(void)
{
}
i nt a = 1;
voi d
x(void)
{
i nt c = 3;

static fl oat d = 4;
}

There is one error: The declaration of ¢ in line 6 conflicts with the function parameter c. Some
compilers have been seen to flag line 24 as an error, saying it conflicts with the declaration in
line 20. This should not be an error, as the scope of y from line 20 runs out at line 22, so there
is no conflict.

Name (Line) Storage Class Scope Linkage Initial Value
w (1) static 1-8, 17-31 internal 5

X (2) static 2-18, 23-31 external Note a
funcl (4) - 4-31 external -

a(4) auto 5-18, 23 none Note b

Pointers on C—Instructor’s Guide 13

Name (Line) Storage Class Scope Linkage Initial Value
b, c (4) auto 5-11, 16-23 none Note b
d 4) auto 6-8, 17, 23 none garbage
e (4) auto 6-8, 17-23 none 1
d (9) auto 9-11, 16 none garbage
e, w(9) auto 9-16 none garbage
b, ¢, d (12) auto 12-15 none garbage
y (12) static 13-15 none 2
a, d, x (19) register 19-22 none garbage
y (19) static 20-22 external Note a
y (24) static 24-31 internal Zero
func2 (26) - 26-31 external —
a (26) auto 27-31 none Note b
y (28) static 28-31 Note ¢ seey (24)
z (29) static 29-31 none zero
Note a
If the variable is not initialized in any other declaration, it will have an initial value of zero.
Note b:
The initial value of a function parameter is the argument that was passed when the function
was called.
Note c:

The ext er n keyword doesn’t change the linkage of y that was declared in line 24.

A

Statements

4.1 Questions

2. Trick question! Thereis no “assignment statement” in C. Assignments are done with an expres-

10.

11.

sion statement that uses the assignment operator, as in:

X =y + z;

Yes, itislega. Thisis useful if you need to introduce a temporary variable for the enclosed
statements, but wish to restrict access to the variable to only those statements.

The integers starting at 0 and ending with 9. The value 10 is not printed.
When there are no initialization or adjustment expressions.

Despite the indentation, the call to put char is not in the loop because there are no braces. Asa
result, the input is not printed, only the checksum. Note that the only thing printed by put char
is the end of file indicator; on most systems, thisis not a valid character.

When the body of the loop must be executed once even if the condition is initially false.
Either af or or awhi | e may be used, but not a do.

i nt n_bl ank;
int counter;

scanf("%", &n_blank);
for(counter = 0; counter < n_blank;
counter = counter + 1){
putchar('\n’);
}

if(x <y || a>=0b)
printf("VWRONG');
el se
printf("RIGHT);

15

16 Chapter 4 Statements

13. Note: a better solution would be to declare an array of these string literals, as discussed in

Chapter 8.

switch(which_word){

case 1:
printf("who");
br eak;

case 2.
printf("what");
br eak;

case 3:
printf("when");
br eak;

case 4.
printf("where");
br eak;

case 5:
printf("why");
br eak;

defaul t:
printf("don't know');
br eak;

}

14. whi l e(hungry())
eat _hanburger ();

15. do
eat _hanburger ();

whi I e(hungry());

16. if(precipitating)

if(tenmperature < 32)
printf("snow ng");

el se
printf("raining");

el se

if(tenperature < 60)
printf("cold");

el se
printf("warni);

Pointers on C—Instructor’s Guide 17

4.2 Programming Exercises
2. This solution exploits the fact that two is the only even number that is prime. Other than that, it
is pretty simplistic.

/*
** Conmpute and print all the prine nunbers from1l to 100.
*/

#i ncl ude <stdlib. h>

i nt
mai n()
{
i nt nunber ;
i nt di vi sor;
/*
** One and two are easy.
*/
printf("1\ n2\n");
/*
** No other even nunmbers are prinme; |ook at the remai ning odd ones.
*/
for(number = 3; nunber <= 100; nunber = number + 2){
/*
** See if any divisor from3 up to the nunber evenly divides the
** nunber.
*/
for(divisor = 3; divisor < nunber; divisor = divisor + 2){
i f(nunber % divisor == 0)
br eak;
}
/*
** | f the | oop above stopped because the divisor got too big,
** we’'ve got a prinme.
*/
i f(divisor >= nunber)
printf("%\ n", nunber);
}
}
Solution 4.2 prime.c

3. The program should look for numbers that are not a triangle at all: negative numbers and discon-
nected lines such as 25, 1, and 1. If they’re sharp, they will also look for degenerate triangles
such as 10, 6, and 4, which have no area and are thus really just a line. The program should use
floating-point numbers, since there is no reason why a triangle must have sides of integra length.
The logic is greatly simplified by sorting the three numbers before trying to classify them.

18 Chapter 4 Statements

/*

** Classify the type of a triangle given the | engths of

*/

its sides.

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt
mai n()

{

fl oat a;
fl oat b;
fl oat C;
fl oat t enp;
/*
** Pronpt for and read the data.
*/
printf("Enter the lengths of the three sides of the triangle: ");
scanf("% % %", &a, &b, &c);
/*
** Rearrange the values so that a is the longest and c is the shortest.
*/
if(a<b){
tenp = a;
a = b;
b = tenp;
}
if(a<c){
tenp = a;
a = c;
c = tenp;
}
if(b<c){
tenp = b;
b = c;
c = tenp;
}
/*

** Now see what kind of triangle it

is. Note that if any of the sides

** s <= 0 (and we really only have to check the shortest one for this),
** or if the two shorter sides together are shorter than the |ongest

** side, it isn't a triangle at all.
*/
if(c<=0]||] b+c<a)

else if(a

Solution 4.3

printf("Not a triangle.\n");

== b & b c)
printf("Equilateral.\n");

continued . . .

Pointers on C—Instructor’s Guide 19

else if(a==Db || b===c)
printf("lsosceles.\n");

el se
printf("Scal ene.\n");

return EXIT_SUCCESS;

}
Solution 4.3 triangle.c
5. The LI NE_SI ZE need only be 128 if get s is used, because the newlines are stripped off. If
they read the input character by character and store the newline, then it must be 129. The initial-
ization of the pr evi ous_l i ne array to the first line of the input avoids the specia case for the
first line that would otherwise be needed.
/ *

** Print one line fromeach set of duplicate lines in the standard i nput.
*/
#i ncl ude <stdio. h>

#def i ne TRUE 1

#def i ne FALSE 0

#define LI NE_SI ZE 129

mai n()

{
char i nput [LI NE_SI ZE], previous_l|ine[LlINE SIZE];
i nt printed from group = FALSE;
if(gets(previous line) != NULL){

while(gets(input) !'= NULL){
if(strenp(input, previous line) !'= 0){
printed_fromgroup = FALSE;
strcpy(previous_line, input);

else if(!printed fromgroup){

printed_fromgroup = TRUE;
printf("%\n", input);

}

Solution 4.5 pr_dup.c

6. You must look character by character to get to the starting position to ensure that it is not
beyond the end of the string.

20 Chapter 4 Statements

/*
** Extract the specified substring fromthe string in src.
*/
i nt
substr(char dst[], char src[], int start, int len)
{
i nt sr ci ndex;
i nt dsti ndex;
dstindex = O;
if(start >= 0 & len > 0){
/*
** Advance srcindex to right spot to begin, but stop if we reach
** the term nating NUL byte.
*/
for(srcindex = 0;
srcindex < start && src[srcindex] !="'\0";
srcindex += 1)
/*
** Copy the desired nunber of characters, but stop at the NUL if
** we reach it first.
*/
while(len > 0 & src[srcindex] !'="\0"){
dst[dsti ndex] = src[srcindex];
dstindex += 1;
srci ndex += 1;
len —= 1;
}
}
/*
** Null—term nate the destination
*/
dst[dstindex] = '\0
return dstindex;
}
Solution 4.6 substr.c

7. Watch for solutions that check for spaces but not for tabs.

This solution is implemented with pointers, but could easily have been done using sub-
scripts. The use of ++ makes the code more compact, but harder to read. Its approach isto
keep two pointers into the string: one from which we get characters, and one to which they are
written. When white space is encountered, the source pointer is advanced but the destination
isn’t. The process continues until the NUL byte is reached in the source. The destination string
is then terminated.

Note that it is ok to overwrite the string because the destination can never become longer
than it originaly was.

Pointers on C—Instructor’s Guide 21

/*
** Shrink runs of white space in the given string to a single space.
*/

#def i ne NUL "\ O’
voi d
debl ank(char *string)
{
char *dest ;
char *Src;
i nt ch;
/*

** Set source and destination pointers to beginning of the string, then
** nove to 2nd character in string.

*/

src = string;

dest = string++;

/*
** Exam ne each character fromthe source string.
*/
while((ch = *src++) I'= NUL){
if(is_white(ch)){
/*
** \WW found white space. |If we're at the begi nning of
** the string OR the previous char in the dest is not
** white space, store a bl ank.

*/
if(src == string || 'is_white(dest[-1]))
*dest++ = ' '
}
el se {
/*
** Not white space: just store it.
*/
*dest ++ = ch;
}
}
*dest = NUL;
}
i nt
is_ white(int ch)
{
return ch ==" " || ch == "\t" || ch == "\v' || ch =="\f" || ch =="\n’
|| ch == "\r";
}

Solution 4.7 deblank.c

5

Operators and Expressions

5.1 Questions

1.

10.

The cast is applied to the result of the division, and because both operands are integers, a trun-
cating integer division is done. The value thereforeis 2.0. If you wanted to do a floating-point
division, use this expression instead:

(float)25 / 10

The same applies to other integer expressions.

They are often used when programming device controllers to set or test specific bits in specific
locations. If anyone comes up with other good answers, please mail them to me at
kar@s.rit. edul

Note that the parentheses are not actually needed, as the higher precedence of the && operator
aready gives this result.

| eap_year = year %400 == 0 ||
(year %100 != 0 && year %4 == 0);

It printsI n range. Thisisbecause 1 <= a istrue and evaluates to 1; the expression then tests
1 <= 10, which is aso true.

It islegal, but doesn't do what it appears to do. Thisis a potential pitfall for new program-
mers, but those coming from another language usually don’t make this mistake because it is not
legal in other languages.

for(a =f1(x);
b f2(x +a), ¢ =f1f3(a b), c>0;
f1(++x)){
statenents

a

}

No, it failsif the array contains nonzero values that happen to sum to zero.
a -25

23

24 Chapter 5 Operators and Expressions

b. -25 b=-24 V. 4,a=4

c. 9 a=9 w. 1, d=1

d 1 X. 3,a=3 b=3 c=3

e 4 y. -27, c=-15 e =-27

f. -5 z. -65

g 40 aa -1

h. -4 bb. 1

i 1 cc. 1

j 10, b =10 dd. 1

k. O ee. O

I 2 ff. 1

m. -19 gg. O

n -17 hh. -25590

o 24 ii 1

p. O j- 1L a=11

g. kk. 0, b =-24

r. 10 . 1, b=-24

S 12, a=12 mm. 17, ¢ =3

t 4, b =4 nn. 5 a=5

u -4, b=-4 oo. 80, a=80,d=2
11. a a+b/ c

b. (a+b)/ ¢

C a*b %6

d a* (b %6)

e a+b ==

f. I (a>"'0 & a<="'9)

g (a&ox2f) =(b] 1) & ~c >0

hh (a<<b) -3<b=<<a+3

i ~ a ++

i, (a==2]] a==4) & (b==2]| b==4)
k. a&b~”(al| b)
l. a+(b+c)

12. On atwao’s complement machine, declare a signed integer, assign it a negative value, right shift
it one bit, and then print the result. If it is negative, an arithmetic shift was used; positive indi-
cates a logical shift.

Pointers on C—Instructor’s Guide 25

5.2 Programming Exercises

2. This program is not portable to EBCDIC-based systems for the reasons described in Programming
Exercise 1. However, note the use of a separate function to do the character wraparound
independent of case.

/*

** Encrypt the text on the standard i nput by rotating the al phabetic characters
** 13 positions through the al phabet. (Note: this program decrypts as well.)
*/

#i ncl ude <stdio. h>

/*

* Encrypt a single character. The base argunent is either an upper or
** | ower case A, depending on the case of the ch argunent.

*/

i nt

encrypt(int ch, int base)

ch —= base
ch += 183;
ch % 26;
return ch + base;
}
/ *
*x Mai n program
*/
mai n(void)
{
i nt ch;
while((ch = getchar()) !'= ECF){
if(ch>"A & ch <=7)
ch = encrypt(ch, "A);
else if(ch >="a & ch <="2z")
ch = encrypt(ch, "a);
put char(ch);
}
}
Solution 5.2 crypt.c
4. With the hints provided in the discussion on bitwise operators, this is not difficult. Watch for
separate functions to isolate the arithmetic that locates the specific bit in one place. A complete
implementation should also have a header file defining the function prototypes.
/ *

** Prototypes for a suite of functions that inplenment an array of bits in a
** character array.
*/

Solution 5.4a continued . . .

26 Chapter 5 Operators and Expressions

/*

** Set a specific bit

*/

voi d set _bit(char bit_array[], unsigned bit_nunber);

/*

*x Clear a specific bit

*/

voi d clear_bit(char bit_array[], unsigned bit_nunber);

/*

** Assign a value to a bit

*/

voi d assign_bit(char bit_array[], unsigned bit nunber

int val ue);

/*

** Test a specific bit

*/

i nt test _bit(char bit_array[], unsigned bit_nunber);
Solution 5.4a bitarray.h

/*

** | npl enents an array of bits in a character array.

*/

#include <limts. h>
#i ncl ude "bitarray. h"

/*

** Prototypes for internal functions

*/

unsi gned character_of fset(unsigned bit_nunber);
unsi gned bit_offset(unsigned bit_nunber);

/*
*x Set a specific bit
*/
voi d
set _bit(char bit_array[], unsigned bit_number)
{
bit _array[character_offset(bit_nunber)] |=
1 << bit_offset(bit_nunber);
}
/*
** Clear a specific bit
*/
voi d
clear _bit(char bit_array[], unsigned bit_ numnber)
{

Solution 5.4b continued . . .

Pointers on C—Instructor’s Guide

bit _array[character_ offset(bit_nunber)] &=
~(1 << bit_offset(bit_nunber));
}

/*
** Assign a value to a bit
*/
voi d
assign_bit(char bit_array[], unsigned bit_nunber, int val ue)
{

if(value I'=0)

set _bit(bit_array, bit_nunber);

el se
clear bit(bit_array, bit_nunber);
}
/*
** Test a specific bit
*/
i nt
test _bit(char bit_array[], unsigned bit_nunber)
{
return (
bit _array[character_offset(bit_nunber)]
& 1 << bit_offset(bit_nunber)
) '=0;
}
/*
** Conpute the character that will contain the desired bit
*/
unsi gned
character_offset(unsigned bit_nunber)
{
return bit_nunber / CHAR BIT;
}
/*
*x Conpute the bit nunmber within the desired character
*/
unsi gned
bit_ of fset(unsigned bit_nunber)
{
return bit _nunber % CHAR BIT;
}
Solution 5.4b

5. This program makes use of thel i mi ts. h file to figure out how many bits there are in an
integer. This could be hard coded if portability were not an issue.

27

bitarray.c

28 Chapter 5 Operators and Expressions

*
i* Store a value in an arbitrary field in an integer
*
#{nclude <limts. h>
#define INT_BITS (CHAR BIT * sizeof(int))
i nt

store_bit_field(int original _value, int value to _store, unsigned starting bit,
unsi gned endi ng_bit)

{
unsi gned mask;
/*
** Validate the bit paraneters. |If an error is found, do nothing. This
** s not great error handling.
*/
if(starting_bit < INT_BITS & ending_bit < INT_BITS &&
starting bit >= ending_bit){
/*
** Construct the mask, which is unsigned to ensure that we get a
** |ogical, not arithnmetic shift.
*/
mask = (unsi gned)-1;
mask >>= INT_BITS — (starting bit — ending bit + 1);
mask <<= endi ng_bit;
/*
** Clear the field in the original val ue.
*/
ori gi nal _val ue & ~nmask
/*
** Shift the value to store to the right position
*/
val ue_to store <<= ending_bit;
/*
** Mask excess bits off of the value, and store it.
*/
original _value |= value to _store & nask;
}
return original _val ue;
}

Solution 5.5 bitfield.c

6

6.1 Questions

Pointers

2. They are rarely used because you can't tell ahead of time where the compiler will put variables.

3. Thevalue is an integer, so the compiler will not generate instructions to dereference it.

5. Evenif of f set has the same value as the literal in the next expression, it is more time consum-
ing to evaluate the first expression because the multiplication to scale of f set to the size of an
integer must be done at run time. This is because the variable might contain any value, and the
compiler has no way of knowing ahead of time what the value might actually be. On the other
hand, the literal three can be scaled to an integer by multiplying it at compile time, and the result
of that multiplication is ssimply added to p at run time. In other words, the second expression
can be implemented by simply adding 12 to p (on a machine with four-byte integers); no runtime
multiplication is needed.

7. Many of the expressions are not legal L-values.

R-value

Integers
L-value addr

Pointers to Integers
R-value L-value addr

1008
1037
996
12
-24
1056
1036
1080
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
0

W SQTOSITARTTSQTOQ0T

1016

illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal

1008 1016

1040 illegal
984 illegal
3 illegal
-6 illegal
1056 illegal
1036 illegal
1080 illegal
illegal illegal
1000 1064

1045 illegal
1012 1060

1076 illegal
1056 1076

illegal illegal
52 illegal
-80 illegal
illegal illegal
0 illegal

29

30

Chapter 6 Pointers

Integers Pointers to Integers
R-value L-value addr R-value L-value addr
t illegal illegal illegal illegal
u illegal illegal 1 illegal
V. illegal illegal 1080 1020
w. 1076 illegal 1076 illegal
X 1077 illegal 1080 illegal
y. illegal illegal 1080 1072
z. illegal illegal 1080 illegal
aa. lllegal illegal 1056 1076
bb. illegal illegal 1081 illegal
cc. lllegal illegal 1072 1084
dd. illegal illegal 1021 illegal

6.2 Programming Exercises

/*
* *

* %

1. The program requires two nested loops: The outer selects each character in the first string one by
one, and the inner checks that character against each of the characters from the second string.
The loops can also be nested the other way around.

Find the first occurrence in 'str’ of any of the characters in ’'chars’ and
return a pointer to that location. |If none are found, or if 'str’ or ’chars

** are NULL pointers, a NULL pointer is returned.

*/

#defi ne NULL 0

char *
find_char(char const *str, char const *chars)

{

char *cp;
/*
** Check argunments for NULL
*/
if(str '= NULL &% chars != NULL){
/*
** Look at 'str’ one character at a tine.
*/
for(; *str !'="\0"; str++){

/*
** Look through ’chars’ one at a tinme for a
** match with *str.
*/
for(cp = chars; *cp !='\0"; cp++)
if(*str == *cp)
return str;

Solution 6.1 continued . . .

Pointers on C—Instructor’s Guide 31

}
}
return NULL;
}
Solution 6.1 findchar.c
The inner loop could aso have been written like this:
for(cp = chars; *cp I="\0";)
if(*str == *cp++)
return str;
2. This solution has two functions for clarity. Because it is only called once, the mat ch function
could also have been written in-line.
/*
** | f the string "substr" appears in "str", delete it.
*/
#def i ne NULL 0 [* null pointer */
#def i ne NUL "\ O’ [* null byte */
#def i ne TRUE 1
#define FALSE O
/*
** See if the substring beginning at 'str’ matches the string "want’. |If
*x so, return a pointer to the first character in 'str’ after the match
*/
char *
mat ch(char *str, char *want)
{
/*
** Keep | ooking while there are nore characters in "want’. W fall out
** of the loop if we get a match.
*/
whil e(*want != NUL)
if(*str++ != *want ++)
return NULL;
return str;
}
i nt
del _substr(char *str, char const *substr)
{
char *next ;
/*
** Look through the string for the first occurrence of the substring.
*/

Solution 6.2 continued . . .

32 Chapter 6 Pointers

while(*str !'= NUL){
next = match(str, substr);
i f(next !'= NULL)
br eak;
str++;

}

/*
** | f we reached the end of the string, then the substring was not
** found.
*/
if(*str == NUL)
return FALSE;

/*

** Delete the substring by copying the bytes after it over the bytes of
** the substring itself.

*/

while(*str++ = *next++)

return TRUE;

}
Solution 6.2 delsubst.c
4. This solution uses the hint to eliminate al the even numbers from the array.
/ *
** Sieve of Eratosthenes — conpute prime nunbers using an array.
*/

#i ncl ude <stdlib. h>

#defi ne SI ZE 1000

#def i ne TRUE 1
#def i ne FALSE 0

i nt
mai n()

{

char sieve[SIZE]; [/* the sieve */

char *sp; /* pointer to access the sieve */
i nt nunber ; /* nunber we’'re conputing */

/*

** Set the entire sieve to TRUE

*/

for(sp = sieve; sp < &sieve[SIZE];)
*sp++ = TRUE;

/*

Solution 6.4 continued . . .

Pointers on C—Instructor’s Guide 33

** Process each nunber from3 to as many as the sieve holds. (Note: the
** |oop is term nated frominside.)

*/
for(number = 3; ; nunber += 2){
/*
** Set the pointer to the proper elenment in the sieve, and stop
** the loop if we’ve gone too far.
*/
sp = &ieve[0] + (nunmber — 3) / 2;
if(sp >= &sieve[SIZE])
br eak;
/*
** Now advance the pointer by nmultiples of the nunber and set
** each subsequent entry FALSE
*/
whil e(sp += nunber, sp < &sieve[SIZE])
*sp = FALSE
}
/*

** G through the entire sieve now and print the nunbers correspondi ng
** to the locations that remain TRUE
*/
printf("2\n");
for(nunmber = 3, sp = &sieve[0];

sp < &sieve[SIZE];

nunber += 2, sp++){

if(*sp)
printf("%l\n", nunmber);

}
return EXI T_SUCCESS;
}
Solution 6.4 sieve.c
5. This program also computes only the odd numbers, so the bit array is half the size that it would
otherwise be. Note the use of CHAR _BI T in the declaration of S| ZE to get the number of bits
per character. The addition of one in this declaration ensures that enough characters appear in
the array even if the number of bits required is not evenly divisible by CHAR BI T. The initial
loop to set the entire array TRUE could have been done bit by bit, but it is faster to do it byte by
byte. It would be faster till if the array were declared as integers, however when you called the
bit array functions you would have to cast the argument to a character pointer.
/ *
** Sjeve of Eratosthenes — conpute prime nunbers using a bit array.
*/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

Solution 6.5 continued . . .

34 Chapter 6 Pointers

#include <limts. h>
#i nclude "bitarray. h"

/*
*x An optim zation that was not described in the problemstatement: 2 is
** the only even nunber that is prine, so to save space and tinme the bit
*x array only represents the odd val ues
*/
/*
** MAX VALUE is the |largest nunber in our "list".
* %
* % MAX BIT NUMBER is the bit nunber corresponding to MAX VALUE, considering
** that we only keep bits to represent the odd nunbers starting with 3.
* %
** SIZE i s the nunber of characters needed to get enough bits.
*/
#defi ne MAX_VALUE 10000
#define MAX BIT NUMBER ((MAX VALUE — 3) / 2)
#defi ne Sl ZE (MAX_ BIT_ NUMBER / CHAR BIT + 1)
i nt
mai n()
{ . .
char sieve[SIZE]; [/* the sieve */
i nt nunber ; /* nunber we’'re conputing */
i nt bit nunber; /* corresponding bit in the sieve */
char *sp; /[* for initializing the array */
/*
** Set the entire sieve to TRUE
*/

for(sp = sieve; sp < &sieve[SIZE];)
*sp++ = Oxff;

/*
** Process each nunber from3 to as many as the sieve hol ds.
*
/
for(number = 3; nunber <= MAX VALUE; nunber += 2){
/*
** Conmpute bit nunmber corresponding to this nunber.
*
/

bit nunber = (nunber - 3) / 2;

/*
** An optimzation that was not described in the probl em
** statenent: If the bit for this value was al ready cl eared by

** an earlier nunber, then skip it — all of its multiples wll
** have been cl eared, too.
*/
if(!'test _bit(sieve, bit_nunber))
conti nue;

Solution 6.5 continued . . .

Pointers on C—lInstructor’s Guide 35
/*
** Now advance the pointer by nultiples of the nunber and set
** each subsequent entry FALSE. Note that we advance by
** "nunber" rather than "nunber / 2" in order to skip the even
** nunmbers that aren't represented in the bit array.
*/
while((bit_nunber += nunber) <= MAX_BI T_NUMBER)
clear _bit(sieve, bit_nunber);
}
/*
** G through the entire sieve now, and print the nunbers correspondi ng
** to the locations that remain TRUE
*/
printf("2\n");
for(bit_nunber = 0, nunber = 3;
nunber <= MAX VALUE;
bit nunmber += 1, nunber += 2){
if(test_bit(sieve, bit_nunber))
printf("%\ n", nunber);
}
return EXI T_SUCCESS;
}

Solution 6.5 sieve2.c
6. The changes needed to the program are minor: Instead of printing the primes, they are counted.
/*

** G through the entire sieve now and count how nmany prines there are
** per thousand nunbers.
*/
n_prines = 1;
limt = 1000;
for(bit_nunber = 0, nunber = 3;
nunber <= MAX_ VALUE;
bit _nunber += 1, nunber += 2){
if(nunber > limt){
printf("%-%: %\n", limt — 1000, limt, n_prines);
n_prines = 0;
[imt += 1000;
if(test _bit(sieve, bit_nunber))
n_prines += 1;
}
printf("%-%: %l\n", limt — 1000, linmt, n _prines);
Solution 6.6

s3_frag.c

36 Chapter 6 Pointers

Counting the primes less than 1,000,000 yields these results:

Average # of Primes

Range of Numbers per Thousand Numbers

0-100,000 95.92
100,000-200,000 83.92
200,000-300,000 80.13
300,000-400,000 78.63
400,000-500,000 76.78
500,000-600,000 75.6
600,000-700,000 74.45
700,000-800,000 74.08
800,000-900,000 73.23

900,000-1,000,000 72.24

The number of primes per thousand numbers is decreasing, but slower and slower. This trend
continues to at least one hillion:

Average # of Primes

Range of Numbers per Thousand Numbers

1,000,000-2,000,000 70.435
2,000,000-3,000,000 67.883
3,000,000-4,000,000 66.33
4,000,000-5,000,000 65.367
5,000,000-6,000,000 64.336
6,000,000-7,000,000 63.799
7,000,000-8,000,000 63.129
8,000,000-9,000,000 62.712
9,000,000-10,000,000 62.09
10,000,000-20,000,000 60.603
20,000,000-30,000,000 58.725
30,000,000-40,000,000 57.579
40,000,000-50,000,000 56.748
50,000,000-60,000,000 56.098
60,000,000-70,000,000 55.595
70,000,000-80,000,000 55.132
80,000,000-90,000,000 54.757
90,000,000-100,000,000 54.45
100,000,000-200,000,000 53.175
200,000,000-300,000,000 51.734
300,000,000-400,000,000 50.84
400,000,000-500,000,000 50.195
500,000,000-600,000,000 49.688
600,000,000-700,000,000 49.292
700,000,000-800,000,000 48.932
800,000,000-900,000,000 48.63
900,000,000-1,000,000,000 48.383

To compute prime numbers this large requires a bit array of 62.5 megabytes. Unless your sys-
tem has this much memory, the performance of the program deteriorates as the operating system
thrashes pages in and out. The speed can be improved by running the outer loop over and over,
each time modifying only as much of the array as will fit in physical memory.

v

Functions

7.1 Questions

2.

© o g &

10.

An advantage is that it allows you to be lazy; there is less code to write. The other conse-
guences, such as being able to call functions with the wrong numbers or types of arguments, are
al disadvantages.

The value is converted to the type specified by the function. The Standard indicates that this is
done the same as if the value had been assigned to a variable of that type.

This is not allowed; the compiler should give an error message.

The value returned is interpreted as if it were an integer.

The argument values are interpreted as the types of the formal parameters, not their real types.
a Itiseader to use a#i ncl ude in severa source files than to copy the prototype.

b. Thereis only one copy of the prototype itself.

c. #incl udeing the prototype in the file that defines the function ensures that they match.

The progression is indeed related to the Fibonacci numbers: each count is the sum of the two
preceding counts plus one. Here are the values requested, plus some additional counts to show
how bad the recursive function redlly is.

Fibonacci(n) Number of Calls

1 1
2 1
3 3
4 5
5 9
6 15
7 25
8 41
9 67
10 109
11 177
15 1,219
20 13,529
25 150,049

37

38 Chapter 7 Functions

Fibonacci(n) Number of Calls

30 1,664,079
40 204,668,309
50 25,172,538,049
75 4,222,970,155,956,099
100 708,449,696,358,523,830,149

7.2 Programming Exercises
2. Another simple recursion exercise.
/ *

** Return the greatest common divisor of the argunments mand n (recursively).
*/

i nt
ged(int m int n)
{
i nt r;
if(m<=0]| n<=0)
return O;
r = m%n;
returnr >0 ?gcd(n, r) : n;
}
Solution 7.2a gcdl.c
However, thisis tail recursion, so here is an iterative solution:
/*

** Return the greatest common divisor of the arguments mand n (iteratively).
*/

i nt
ged(int m int n)
{

i nt r;

if(m<=0]| n<=0)

return O;
do {

r = m%n;

m = n;

n=r;

} while(r >0);

Solution 7.2b continued . . .

Pointers on C—Instructor’s Guide 39

return m
}
Solution 7.2b gcd2.c
4. This problem is interesting because the argument list terminates itself; the problem does not
require any named arguments, but the st dar g macros do. Watch for the limiting case of no
arguments at all.
/ *

** Return the |argest value fromthe argument list. The list is termnated by a
** negative val ue.
*/

#i ncl ude <stdarg. h>

i nt
max_list(int first arg, ...)
{
va |ist var_arg;
i nt max = 0O;
/*
** CGet the first arg if there is one and save it as the nax.
*/
if(first_arg >= 0){
i nt this_arg;
max = first_arg;
/*
** CGet the remmi ning argunents and save each one if it is
** greater than the current max.
*/
va_start(var_arg, first_arg);
while((this_arg = va_arg(var_arg, int)) >=0)
if(this_arg > nmax)
max = this_arg;
va_end(var_arg);
}
return naex,
}
Solution 7.4 max.c

5. Thisis ambitious even in its stripped down form, primarily because of the concept of parsing the
format string. This solution chooses to ignore undefined format codes. The test in the swi t ch
statement takes care of format strings that end with a %

40 Chapter 7 Functions

/*
** Bare—bones printf function: handles the %, %, %, and % format codes.
*/

#i ncl ude <stdarg. h>

voi d
printf(char *format, ...)
{
va_|ist arg;
char ch;
char *str;
va_start(arg, format);
/*
** Get the format characters one by one.
*/
while((ch = *format++) '="'\0"){
if(ch!l="9%){
/*
** Not a format code — print the character verbatim
*/
put char(ch);
conti nue;
}
/*
** \W got a % — now get the fornmat code and use it to format
** the next argument.
*/
switch(*format !'="\0" ? *format++ : '\0"){
case 'd':
print_integer(va_ arg(arg, int));
br eak;
case 'f’:
print float(va_ arg(arg, float));
br eak;
case 'c’':
putchar(va arg(arg, int));
br eak;
case 's’:
str = va_arg(arg, char *);
while(*str !'="\0")
put char(*str++);
br eak;
}
}
}

Solution 7.5 printf.c

Pointers on C—Instructor’s Guide 41

6. Having the flexibility to choose how to print values that have more than one legal output is con-
venient! This solution uses a recursive helper function to do the work. The magnitude table is
for a 32-bit machine and will have to be expanded for machines with larger integers. It is not
unreasonable to require the caler to make the buffer large enough, as the maximum possible
length of the output is easily calculated.

/ *
** Convert a numeric value to words.
*/
static char *digits[] = {
"t "ONE ", "TWD ", "THREE ", "FOUR ", "FIVE ", "SIX ", "SEVEN ",
"EIGHT ", "NINE ", "TEN ", "ELEVEN ", "TWELVE ", "TH RTEEN ",
"FOURTEEN ", "FIFTEEN ", "SI XTEEN ", "SEVENTEEN ", "ElI GHTEEN ",
"Nl NETEEN "
b
static char *tens[] = {
nn , nn , n T\/EI\I'I'Y n , n THI R‘I’Y n , n Fm‘I'Y n , n FI FTY n , n SI XTY n , n SEVEI\I'I'Y n ,
"El GHTY ", "N NETY "
}
static char *magni tudes[] = {
", "THOUSAND ", "M LLION ", "BILLION "
b
/ *
** Convert the last 3-digit group of ambunt to words. Anmount is the value
* to be converted, buffer is where to put the words, and magnitude is the
** nanme of the 3-digit group we’re working on
*/

static void
do_one_group(unsigned int anount, char *buffer, char **magnitude)

{

i nt val ue;
/*
** Get all the digits beyond the Iast three. |If we have any val ue

** there, process those digits first. Note that they are in the next
** magni t ude.
*/
val ue = anount / 1000;
if(value > 0)
do_one_group(value, buffer, magnitude + 1);

/*

** Now process this group of digits. Any hundreds?
*/

amount % 1000;

val ue = anount / 100;

if(value > 0){

Solution 7.6 continued . . .

42 Chapter 7 Functions

strcat(buffer, digits[value]);
strcat(buffer, "HUNDRED ");

}

/*

** Now do the rest of the value. |If less than 20, treat it as a single
** digit to get the teens nanes.

*/

val ue = anmobunt % 100;
i f(value >= 20){
/*
** Greater than 20. Do a tens nane and | eave the units to be
** printed next.
* [
strcat(buffer, tens[value / 10]);
val ue % 10;

if(value > 0)
strcat(buffer, digits[value]);

/*
** | f we had any value in this group at all, print the nmagnitude.
*/
if(anpbunt > 0)
strcat(buffer, *nagnitude);

}
voi d
written_anount (unsigned int amount, char *buffer)
{
if(amount == 0)
/*
** Special case for zero.
*/
strcpy(buffer, "ZERO ");
el se {
/*
** Store an enpty string in the buffer, then begin.
*/
*puffer = '\0";
do_one_group(amount, buffer, nagnitudes);
}
}

Solution 7.6 written.c

Arrays

8.1 Questions
2. No, the second oneisthesameasarray[i] + j due to the precedence of the operators.

3. The assignment is illegal, as the pointer it attempts to compute is off the left end of the array;
the technique should be avoided for this reason. Nevertheless, it will work on most machines.

4. char buf fer[Sl ZE] ;
char *front, *rear;

front = buffer;
rear = buffer + strlen(buffer) — 1,
while(front < rear){
if(*front !'= *rear)
br eak;
front ++;
rear——;

if(front >= rear){
printf("It is a palindrone!\n");

}
This question borders on entrapment! If you try and get fancy like this:
if(*front++ !'= *rear—)
br eak;

the program can fail because the test after the loop ends is no longer valid. Thisis a good
example of the discussion surrounding the statement “experienced C programmers will have little
trouble with the pointer loop...”

6. This depends on the machine. Borland C++ for the 80x86 family produces results similar to the
68000 code shown in the text. Some RISC machines have been shown to produce better code
with t ry1 than with t ry5; this is because RISC architectures do not implement the fancy
addressing modes that the * x++ expression exploits.

43

44 Chapter 8 Arrays

7. This depends entirely on the particular machine and compiler being used.
o} i nt coin_values[] ={ 1, 5, 10, 25, 50, 100 };

10. With two-byte elements, each of the four rows occupies four bytes.

Expression Value
array 1000
array + 2 1008
array[3] 1012

array[2] - 1 1006
&array[1][2] 1008
&array[2] [0] 1008

11. This exerciseis tedious, but not really difficult.

Expression Value Type of X
array 1000 int (*x)[2][3][6];
array + 2 1288 int (*x)[2][3][6];
array[3] 1432 int (*x)[3][6];
array[2] - 1 1216 int (*x)[3][6];
array[2] [1] 1360 int (*x)[6];
array[1][0] + 1 1168 int (*x)[6];
array[1][0] [2] 1192 int *x;
array[O0][1][0] + 2 1080 int *x;
array[3][1][2][5] can'ttell int x;
&array[3][1][2][5] 1572 int *x;

13. Expression Subscript expression
*array array|[0]
*(array + 2) array| 2]
*(array + 1) + 4 array[1l] + 4
((array +1) +4) array[1] [4]
“(*(*(Carray +3) +1) +2) array[3][1][2]
((*rarray +1) +2) array[0][1][2]
*(**array + 2) array[0][0][2]
**(*array + 1) array[0][1][0]
***array array[0][0][O]

14. If i were declared as a pointer to an integer, there is no error.

15. The second makes more sense. If whi ch is out of range, using it as a subscript could crash the
program.

16. There are severa differences. Being an argument, ar r ay1 is actually a pointer variable; it
points to the array passed as the actual argument, and its value can be changed by the function.
No space for this array is alocated in this function, and there is no guarantee that the argument
actually passed has ten elements.
On the other hand, ar r ay2 is a pointer constant, so its value cannot be changed. It points
to the space alocated in this function for ten integers.

18. There are two ways:

void function(int array[][2][5]);

Pointers on C—Instructor’s Guide 45

void function(int (*array)[2][5]);

The second and third sizes cannot be omitted or the compiler will have no idea how large each
of those dimensionsis. The first size can be omitted because the subscript calculation does not
depend on it.

Technically, there are millions of additional ways—just give arbitrary integers for the first
size. The value isignored, so they all have the same effect. Thisisn't very useful, though.

19. Simply append an empty string to it. The end of the table can then be checked like this:
for(kwp = keyword_table; **kwp !'="\0"; kwp++)

8.2 Programming Exercises

1. The key to this is that the initialization be done statically, not with assignment statements. This
means that the array must be in static memory, even though the problem did not specifically state
that.

Also, the problem purposely avoids specifying any locations that have a zero for any sub-
script. This simply tests whether the student remembers that subscripts begin at zero.

The solution below exploits incomplete initialization to avoid having to enter each value
explicitly.

unsi gned char char _values[3][6][4][5] = {
{ /* 0 */
{ /* 0,0 */
{ 0},
}

}1
{ 1% 1%
{ /* 1,0 */

Solution 8.1 continued . . .

46 Chapter 8 Arrays

{ 01},
{0 0 0 "\n }
}
b
{ I1* 2%/
{ /1* 2,0 */
{0}
}H
{1* 2,1 %
{ 01},
{ 0, 0, 0320}
H
{ 1* 2,2 %
{ 01},
{0, "0 1},
{0 0 "\"" },
{ 0, "\121" }
b
{ 1* 2,3 *
{0}
H
{ 1* 2,4 %
{ 01},
{ 01},
{ 0},
{0 0 "3, 31}
W
{ 1* 2,X*/
{ 0},
{ 0},
{ 0},
{0 o0 0 O "} }
}
H
b
Solution 8.1 arr_init.c
3. This problem is simple because the argument must be a specific size. The test for zero or one is
simple, though perhaps not immediately obvious.
/*
** Test a 10 by 10 matrix to see if it is an identity matrix.
*/

#def i ne FALSE 0
#def i ne TRUE 1

i nt
identity matrix(int matrix[210][10])
{

i nt row,

Solution 8.3 continued . . .

Pointers on C—Instructor’s Guide 47

i nt col um;

/*

** G through each of the matrix el enents.
*/

for(row=0; row < 10; row += 1){
for(colum = 0; colum < 10; colum += 1){
/-k
** |f the row nunber is equal to the colum nunber, the
** val ue should be 1, else 0.

*/
if(mtrix[row][colum] !'= (row == colum))
return FALSE
}
}
return TRUE
}
Solution 8.3 identtyl.c
4. The storage order of the array elements allows a pointer to an integer to be walked sequentially
through the elements. Separate counters keep track of the row and column, using the size argu-
ment provided. Note that there is no way to check whether the matrix is actually the size indi-
cated by the second argument.
/ *
** Test a square matrix to see if it is an identity matrix.
*/

#def i ne FALSE 0
#def i ne TRUE 1

i nt
identity matrix(int *matrix, int size)
{ |
i nt r ow,
i nt col um;
/*
** G through each of the matrix el enents.
*/

for(row = 0; row < size; row += 1){
for(colum = 0; colum < size; colum += 1){
/*
** | f the row nunber is equal to the colum nunber, the
** val ue should be 1, else O.
*/
if(*matrix++ !'= (row == colum))
return FALSE

Solution 8.4 continued . . .

48 Chapter 8 Arrays

}
return TRUE;
}
Solution 8.4 identty2.c
6. If you have some method for the students to submit their programs electronically, giving bonus
points for achieving a program that is smaller than some threshold gives students strong motiva-
tion to write compact code.
/ *

** Conpute an array offset froma set of subscripts and di nension information
*/

#i ncl ude <stdarg. h>

#define reg regi ster
i nt
array offset(reg int *arrayinfo, ...)
{
reg i nt ndi m
reg i nt of f set;
reg i nt hi, |o;
reg i nt i
i nt s[10] ;
va_|ist subscripts;
/*
** Check the nunber of dinensions.
*/

ndi m = *arrayi nf o++;
if(ndim>= 1 & ndim<= 10){

/*
** Copy the subscript values to an array.
*/
va_start(subscripts, arrayinfo);
for(i =0; i <ndinm i +=1)

s[i] = va_arg(subscripts, int);
va_end(subscripts);

/*
** Conpute the of fset one dinension at a tine.
*/
of fset = O;
for(i =0; ndim ndim—, i++){
/*
** Get the limts for the next subscript.
*/
|l o = *arrayi nf o++;
hi = *arrayi nf o++;

Solution 8.6 continued . . .

Pointers on C—Instructor’s Guide 49

/*
** Note that it is not necessary to test for hi <lo
** pecause if this is true, then at |east one of the
** tests beloww Il fail.
*/
if(s[i] <lo || s[i] > hi)
return —-1;
/*
** Conmpute the offset.
*/
offset *= hi — lo + 1;
of fset += s[i] — |o;
}
return offset;
}
return -1;
}
Solution 8.6 subscrpl.c
7. Thisfunction is very similar to the previous one except that the subscripts must be processed
from right to left.
/*
** Compute an array offset froma set of subscripts and di nensi on infornmation.
*/
#i ncl ude <stdarg. h>
#define reg regi ster
i nt
array offset2(reg int *arrayinfo, ...)
{
reg i nt ndi m
reg i nt hi ;
reg i nt of f set;
reg i nt | o;
reg i nt *sp;
i nt s[10];

va_|ist subscripts;

/*

** Check nunber
*/

ndi m = *arrayi nf o++;

if(ndim>= 1 & ndim<= 10){

of di nensi ons

/*
** Copy subscripts to array
*/

Solution 8.7

continued . . .

50 Chapter 8 Arrays

va_start(subscripts, arrayinfo);

for(offset = 0; offset < ndim offset += 1)

s[offset] = va _arg(subscripts,

va_end(subscripts);

/*

int);

** Conpute offset, starting with |ast subscript and worki ng back

** towards the first.

*/

of fset = O;

arrayinfo += ndim?* 2;
Ssp = s + ndim

while(ndim— >= 1){

** Get the limts for the next subscript.

/*
*/
hi = *—arrayi nf o;
lo = *—arrayinfo
/*

** Note that it is not necessary to test for hi <lo

** pbecause if this is true,
** tests beloww !l fail.

then at | east one of the

subscrp2.c

8. There are 92 valid solutions. The key to making the program simple is to separate the func-
tionality into separate functions. The search for conflicts is limited to only those rows with
queens in them, as described in the comments. Doing this eliminates roughly 3/8 of the work.

* [
if(*——sp > hi || *sp <lo){
return -1;
}
/*
** Conpute the offset.
* [
offset *= hi —lo + 1
of fset += *sp — |o;
}
return of fset;
}
return -1;
}
Solution 8.7
/*

** Sol ve the Ei ght Queens Probl em

*/

#i ncl ude <stdlib. h>

#def i ne TRUE

Solution 8.8

1

continued . . .

Pointers on C—Instructor’s Guide 51

#def i ne FALSE 0

/*
** The chessboard. If an elenment is TRUE, there is a queen on that square;
** i f FALSE, no queen.
*/
i nt board[8] [8] ;
/*
** print_board
* %
** Print out a valid sol ution.
*/
voi d
print_board()
{
i nt r ow,
i nt col um;
static int n_sol uti ons;

n_sol uti ons += 1;
printf("Solution #%:\n", n_solutions);

for(row=0; row< 8; row += 1){
for(colum = 0; colum < 8; colum += 1){
if(board[row][colum])
printf(" Q);

el se
printf(" +");
}
putchar("\n");
}
putchar('\n");
}
/*
** conflicts
* %
*x Check the board for conflicts with the queen that was just placed.
** NOTE: because the queens are placed in the rows in order, there is no
** need to | ook at rows below the current one as there are no queens there!
*/
i nt
conflicts(int row, int colum)
{
i nt i;
for(i =1; i <8; i +=1){
/*

** Check up, left, and right. (Don’t have to check down; no
** queens in those rows yet!)
*/

Solution 8.8 continued . . .

52

}
/*

Chapter 8 Arrays

row — i >= 0 & board[row — i

return TRUE;

i f (

][colum])

if(colum — i >= 0 & board[row][colum — i])
return TRUE;
if(colum + i < 8 && board][row][colum + i])
return TRUE;
/*
** Check the diagonals: up and left, up and right. (Dont have

** to check down; no queens there yet!)

*/
if(row—1i > 0 & colum — i >= 0
&% board][row - i][colum — i])
return TRUE;
if(row—i >0 & colum + i < 8
&% board][row — i][colum + i])
return TRUE;
}
/*
** |f we get this far, there were no conflicts!
*/

return FALSE;

** pl ace_queen

* %

* %

Try to place a queen in each columm of the given row

*/
voi d
pl ace_queen(int row)
{
i nt col umm;
/*
** Try each col um, one by one.
*/
for(colum = 0; colum < 8; colum += 1){
board[row][colum] = TRUE
/*

** See if this queen can attack any of the others (don't need to

** check this for the first queen!).

*/
if(row==0 || !'conflicts(row, colum))
/*
** No conflicts — if we’'re not yet done, place the next
** queen recursively. |f done, print the solution
*/
if(row<7)

pl ace_queen(row + 1);

Solution 8.8

continued . . .

Pointers on C—Instructor’s Guide 53

el se
print_board();
/*
** Renpve the queen fromthis position.
*/
board[row][colum] = FALSE;
}
}
i nt
mai n()
{
pl ace_queen(0);
return EXI T_SUCCESS;
}

Solution 8.8 8queens.c

9

Strings, Characters, and Bytes

9.1 Questions

2.

It is more appropriate because the length of a string simply cannot be negative. Also, using an
unsigned value allows longer string lengths (which would be negative in a signed quantity) to be
represented. It is less appropriate because arithmetic involving unsigned expressions can yield
unexpected results. The “advantage” of being able to report the length of longer strings is only
rarely of value: On machines with 16 bit integers, it is needed only for strings exceeding 32,767
characters in length. On machines with 32 bit integers, it is needed only for strings exceeding
2,147,483,647 bytes in length (which is rare indeed).

Y es, then subsequent concatenations could be done more efficiently because the work of finding
the end of the string would not need to be repeated.

Only if the last character in the array is aready NUL. A string must be terminated with a NUL
byte, and st r ncpy does not guarantee that this will occur. However, the statement does not let
st rncpy change the last position in the array, so if that contains aNUL byte (either through an
assignment or by the default initialization of static variables), then the result will be a string.

First, the former will work regardless of the character set in use. The latter will work with the
ASCII character set but will fail with the EBCDIC character set. Second, the former will work
properly whether or not the locale has been changed; the latter may not.

The main thing is to eliminate the test for i sl ower : this is unnecessary because t oupper
includes such atest already. After that, the loop can be made more efficient (but not simpler!)
by saving a copy of the character being processed, like this:

register int ch;

f;).r(pstring = nmessage; (ch = *pstring) !'="\0";){
*pstring++ = toupper(ch);
}

55

56 Chapter 9 Strings, Characters, and Bytes

9.2 Programming Exercises
1. Thisis quite a simple program, but contains a lot of similar sequences of code. A related prob-

/*

lem in Chapter 13 addresses this problem.

** Conpute the percentage of characters read fromthe standard input that are in
** each of several

*/

#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
mai n()

{

n_cntrl;
n_space;
n digit;
n_| ower;
n_upper ;
n_punct ;
n_nprint;
total;

i nt ch;
i nt cat

/*

** Read and process each character

*/
whi l e((ch
t ot

/*

* *

*/
i f (

i f (

i f (

Solution 9.1

character categori es.

egory,

= getchar()) '= EOF){

al += 1;

Call each of the test functions with this char;
** jncrenent the associ ated counter.

iscntrl(ch))
n_cntrl += 1;
i sspace(ch))
n_space += 1;
isdigit(ch))
ndigit += 1;
islower(ch))
n_|ower += 1;
i supper(ch))
n_upper += 1;
i spunct(ch))
n_punct += 1;
isprint(ch))
n_nprint += 1;

continued . . .

}

/*
** Print the results
*/
if(total == 0)
printf("No
el se {
printf("9%3.
n_cntrl
printf("9%.
n_space
printf("9%.
n_digit
printf("9%.
n_| ower
printf("93.
n_upper
printf("93.
n_punct
printf("9%3.
n_npri nt
}

return EXI T_SUCCESS;

Of %86 ¥%s
* 100.0
Of %86 ¥%s
* 100.0
Of %86 ¥%s
* 100.0
Of %0 %
* 100.0
Of %0 ¥s
* 100.0
Of %86 Y&
* 100.0
Of %86 ¥%s

}

Solution 9.1

3. In order to do what this question asks, the size of the destination array must be known. The

Pointers on C—Instructor’s Guide

characters in the input!\n");

control characters\n",

/[total);

whi t espace characters\n",
/[total);

digit characters\n",

/ total);

| ower case characters\n",
/[total);

upper case characters\n",
/[total);

punct uati on characters\n",
/[total);

non—printabl e characters\n",

* 100.0 / total);

57

char_cat.c

problem did not specify this explicitly, but it cannot be avoided. Also be sure that the function
returns its first argument, which is required by the “similar to st r cpy” specification.

/*
** Safe string copy.
*/

#i ncl ude <string. h>

char *

ny_strcpy(char *dst, char const

{
strncpy(dst, src, size);
dst[size — 1] ="'\0";
return dst;

}

Solution 9.3

*src,

int size)

mstrcpy.c

4. Again, the size of the destination array must be known, and the first argument must be returned.
Note the danger in trying to determine the length of the existing string in the first argument: if it

is not terminated with aNUL byte, then st r | en will run past the end of the array looking for

58 Chapter 9 Strings, Characters, and Bytes

one. The logic later in the function handles this case properly, but there is still the possibility
that a runaway st rl en will crash the program. For this reason, this solution uses the
ny_strl en function from question one.

Notice also that the value returned by my_strl en is being cast to an integer; this prevents
the result of the subtraction from being promoted to unsigned.

/*
** Safe string concatenation
*/

#i ncl ude <string. h>
#i nclude "string_len. h"

char *
my_strcat(char *dst, char const *src, int size)
{
i nt | engt h;
size —= 1;
length = size — (int)my_strlen(dst, size);
if(length > 0){
strncat(dst, src, length);
dst[size] ="'\0O
}
return dst;
}
Solution 9.4 mstrcat.c
5. This function calls st r ncat to do the work after adjusting the length parameter.
/*

** Append a string to the end of an existing one, ensuring that the destination
** puffer does not overfl ow.

*/
voi d
my_strncat(char *dest, char *src, int dest len)
{
regi ster int | en;
/*

** Get length of existing string in destination buffer; deduct this
** | ength fromdest |len. The "+1" accounts for the term nating NUL byte
** that is appended.

*/
len = strlen(dest);
dest _len —= len + 1;
/*

Solution 9.5 continued . . .

Pointers on C—Instructor’s Guide 59

** |f there is any roomleft, call strncpy to do the work.
*/
if(dest len > 0)

strncat (dest + len, src, dest _len);

}
Solution 9.5 mstrncat.c
7. This function can be implemented with either of the two approaches described in the answer to
Programming Exercise 6. Only the first approach, calling the library string functions to do some
of the work, is shown here.
/ *

** Find the | ast occurrence of a character in a string and return a pointer to

** gt

*/

#i ncl ude <string. h>
#i ncl ude <stdio. h>

char *
nmy_strrchr(char const *str, int ch)
{
char *prev_answer = NULL
for(; (str = strchr(str, ch)) !'= NULL; str += 1)
prev_answer = str;
return prev_answer;
}
Solution 9.7 mstrrchr.c
8. This function can also be implemented with either of the two approaches described above. Only
the first approach is shown here.
/ *

** Find the specified occurrence of a character in a string and return a

** pointer to it.
*/

#i ncl ude <string. h>

#i ncl ude <stdi o. h>

char *
ny_strnchr(char const *str, int ch, int which)

{

char *answer = NULL;

while(—which >= 0 & (answer = strchr(str, ch)) !'= NULL)
str = answer + 1;

Solution 9.8 continued . . .

60 Chapter 9 Strings, Characters, and Bytes

return answer;

}
Solution 9.8 mstrnchr.c
9. There are no routines in the string library that perform this task directly, so it must be written
from scratch. The string library does offer some help, though.
/ *

** Count the nunber of characters in the first argunment that al so appear in the
** second argunent.

*/
i nt
count _chars(char const *str, char const *chars)
{
i nt count = O;
while((str = strpbrk(str, chars)) !'= NULL){
count += 1;
str++;
}
return count;
}
Solution 9.9 count_ch.c
10. The fact that the string can begin or end with white space forces the loops that skip it to come
first. This will not occur to everyone.
/ *

** Determ ne whether or not a string is a palindrone. Nonal phabetic characters
** are ignored, and the conparison is not case sensitive.
*/

#i ncl ude <ctype. h>

#defi ne TRUE 1

#define FALSE O

i nt

pal i ndrome(char *string)

{
char *string_end;

string_end = string + strlen(string) — 1;

whi | e(TRUE){
/*

Solution 9.10 continued . . .

}
}
Solution 9.10
12.
/*

Pointers on C—Instructor’s Guide 61

** Advance the begi nning pointer to skip any nonletters.
** Retreat the ending pointer |ikew se.
*/
whil e(!isal pha(*string))
string++;

while(!isal pha(*string_end))
string_end—;

/*
** | f the pointers have passed each other, we’re done, and it is
** a palindrone.
*/
if(string_end <= string)
return TRUE

/*

** Otherw se, conpare the characters to see if they match.

** Converting themboth to | ower case before conparing makes it
** case insensitive.

*/

if(tolower(*string) !=tolower(*string end))
return FALSE

/*

** These characters done — nopve to the next ones.

*/

string++;

string_end—;

palindrm.c

This solution makes extensive use of library functions. The use of the string functions requires
that the array always be a string, which is why it is NUL-terminated after each character is
appended in the final loop.

** Convert a key word to the scranbl ed al phabet used with encrypt and decrypt.

*/

#i ncl ude <ctype. h>
#i ncl ude <string. h>

#defi ne TRUE
#def i ne FALSE

i nt

1
0

prepare_key(char *key)

{

Solution 9.12

regi ster char *keyp;

continued . . .

62

Chapter 9 Strings, Characters, and Bytes

regi ster char *dup

regi ster int char act er

/*

** Make sure the key is not enpty.
*/

if(*key == '\0")

return FALSE;

/*
** First, convert the word to upper case (|l ower case would be just as
** good, as long as we’re consistent).

*/
for(keyp = key; (character = *keyp) !="\0"; keyp++){
if(!islower(character)){
i f(!isupper(character))
return FALSE;
*keyp = tol ower(character);
}
}
/*
** Now elimnate all duplicate characters fromthe word
*/
for(keyp = key; (character = *keyp) !="\0";){
dup = ++keyp;
while((dup = strchr(dup, character)) != NULL)
strcpy(dup, dup + 1);
}
/*

** Now add the remaining letters of the al phabet to the key. This nakes
** use of the fact that the | oop above | eaves keyp pointing at the
** term nating NULL byte.

*/
for(character = ’'a’; character <= 'z’; character += 1){
i f(strchr(key, character) == NULL){
*keyp++ = character
*keyp = '\ 0’
}
}
return TRUE;
}
Solution 9.12 prep_key.c

13. This solution assumes that the codes for alphabetic characters are consecutive, so it works on
ASCII machines but fails on EBCDIC machines. This could be solved by using a second array
containing an ordinary aphabet; this is illustrated by the solution to the next program.

Pointers on C—Instructor’s Guide 63

/*
** Encrypts a string of characters according to the key provided.
*/

#i ncl ude <ctype. h>

voi d
encrypt (char *data, char const *key)

regi ster int character;
/*
** Process the data one character at a tinme. This depends on the key
** peing all |ower case.
*/
for(; (character = *data) !='\0"; data++){
if(islower(character))
*data = key[character — 'a'];

el se if(isupper(character))
*data = toupper(key[character — A]);

}
}
Solution 9.13 encrypt.c
14. The solution presented here makes use of an alphabet array so that it is not restricted to ASCII
machines.
/ *

** Decrypts a string of characters according to the key provided.
*/

#i ncl ude <ctype. h>
#i ncl ude <string. h>

static char al phabet [] = "abcdef ghi j kl mopqr st uvwxyz";

voi d
decrypt (char *data, char const *key)

regi ster int character;

/*

** Process the data one character at a time. This depends on the key
** peing all |ower case.

*/

for(; (character = *data) !='\0"; data++){

if(islower(character))
*data = al phabet[strchr(key, character) — key];
el se if(isupper(character))
*data = toupper(al phabet[strchr(key,
tol ower (character)) — key]);

Solution 9.14 continued . . .

64 Chapter 9 Strings, Characters, and Bytes

}
}
Solution 9.14 decrypt.c
16. This solution violates the Standard. Can you see where?
/ *

** Take a pattern string and a digit string and copy the digits into the
** pattern
*/

#i ncl ude <stdi o. h>
#def i ne TRUE 1
#def i ne FALSE 0

i nt
format (char *pattern, char *digits)
{
char *patternp, *digitp;
/*
** Check for NULL argunents.
*/

if(pattern == NULL || digits == NULL)
return FALSE;

/*
** Find end of both strings and see if digit string is enpty.
*/
patternp = pattern + strlen(pattern) — 1;
digitp = digits + strlen(digits) — 1;
if(digitp < digits)
return FALSE;

/*
** Continue until either pattern or digits have been used up
*/
while(patternp >= pattern & digitp >= digits){
if(*patternp == "#){
*patternp— = *digitp—;
conti nue;
}
patternp—;
}
/*
** |f there are nore characters in the pattern, replace themwth
** bl anks.
*/
whil e(patternp >= pattern)
if(*patternp == "."){

Solution 9.16 continued . . .

}

/*

Pointers on C—Instructor’s Guide 65

/*

** Extend zeros out to the left of the dot.
*/

char *p0;

for(p0 = patternp + 1; *p0 == "' ' *p0++ = '0")
/ * '

** Put a zero to the left of the dot.

2y

*——patternp = '0;

——patternp;

conti nue;

}

*patternp— =" '

** |f there are digits left over, it is an error.

*/

return digitp < digits;

}
Solution 9.16

17.

format.c

Technically, the test
while(patternp >= pattern & digitp >= digits){

isillegal, because when it is false, either the pat t er np or the di gi t p pointer has run off the
left end of the corresponding array. On the other hand, it is possible (though unlikely) that the
caller has invoked the function like this:

if(format(p_array + 1, d_array + 1))

in which case there is no violation.

The interesting part of this is that the pointer arithmetic needed to make the comparison
work in the legal case shown above cause it to work in the “illegal” case as well. In fact, the
only way that the program could fail is if one of these arrays began at location zero: computing a
pointer to the location “before” the beginning of the array would actually wrap around and pro-
duce a pointer to the end of the address space. This would make the comparison fail.

On most systems this cannot happen: zero is the null pointer, so the compiler may not put
any data there. However, there is still a danger: the Standard allows the null pointer to actually
be any value, even though zero is aways used to represent it in source code. With such an
implementation, it is possible that the problem described above could occur, and it would be the
devil to debug.

The function should really be fixed to remove this dependency; the erroneous version was
given here solely to spark this discussion.

This is probably the longest single function in this book. Sloppy design would make it consider-
ably longer. For example, much of the processing for the digit selector and significance starter is
identical, and should not be repeated.

66 Chapter 9 Strings, Characters, and Bytes

/*
** Process a pattern string by copying digits froma digit string into it, ala
** the |BM 360 "edit" instruction.
*/
#defi ne NULL 0
#def i ne NUL "\ O’
#define DI G T_SELECTOR TH#
#defi ne Sl GNI FI CANCE_START e
#defi ne TRUE 1
#defi ne FALSE 0
#define reg regi ster
char *
edit(reg char *pattern, reg char *digits)
{
reg i nt digit;
reg i nt pat _char;
reg i nt fill;
reg i nt si gni fi cance;
reg char *first _digit;
/*
** Check for missing data, and get fill character.
*/
if(pattern == NULL || digits == NULL || (fill = *pattern) == "'\0")
return NULL;
first _digit = NULL;
si gni fi cance = FALSE;
/*
** Process pattern string one by one.
*/
while((pat_char = *++pattern) !'= NUL){
/*
** See what neani ng the pattern character has.
*/
switch(pat_char){
case DIGA T_SELECTOR
case S| GNI FI CANCE_START:
if((digit = *digits++) == NUL){
*pattern = NUL;
return first _digit;
}
if(digit ==" ")
digit ='0";
Solution 9.17

continued . . .

}

if(digit '="0" || pat_char
if(!'significance)
first digit
signi fi cance = TRUE;
}
br eak;
defaul t:
digit = pat_char;
br eak;
}
/*

Pointers on C—Instructor’s Guide 67

== S| GNI FI CANCE_START) {

= pattern;

** Store the proper character in the result.

*/
*pattern = significance ? digit : fi

return first_digit;

}
Solution 9.17

ibm_edit.c

10

Structures and Unions

10.1 Questions

1. Structure members can be all different types; they are accessed by name; and unused memory
may be between adjacent members to enforce boundary alignment requirements. Array elements
must all be the same type; they are accessed with a subscript; and no space is ever lost between
elements for boundary alignment.

3. First, a declaration where al components are given:

struct S {
i nt a;
fl oat b;
}ox

This declares x to be a structure having two members, a and b. In addition, the structure tag S
is created for use in future declarations.
Omitting the tag field gives:

struct {
int a;
fl oat b;
} oz,

which has the same effect as before, except that no tag is created. While other declarations may
created more structure variables with identical members, it is not possible to create any more
variables with the same type as z.

Omitting the member list gives:

struct S Y;

which declares another structure variable y with the same type as x.
Omitting the variable list gives:

struct S {
i nt a;
fl oat b;
}s

69

70

Chapter 10 Structures and Unions

10.

12.
13.

which simply defines the tag S for use in later declarations. Finally, there is the incomplete dec-
laration

struct S

which informs the compiler that S is a structure tag to be defined later.
abc is the structure tag, not the name of a variable, so the assignment statements are illegal.
abc is atype name, not the name of a variable, so the assignment statements are illegal.

Because x is stored in static memory, the initializer for ¢ need not be given; the example below
omits it.

struct {
i nt a;
char b[10] ;
fl oat cC;

} x ={ 3, "hello" };

With 16 bit integers, two bytes are wasted, one after each character. With 32 bit integers, six are
wasted. Note that space is lost after ¢ in order to guarantee that the structure ends at the most
stringent boundary. If this were not done, the next variable allocated might not begin at the
proper boundary.

The following are al implementation dependent:
a. whether the fields are allocated right to left or left to right;

b. whether fields too large to fit in the remaining bits of a word begin there anyway and cross
the boundary to the next word or begin in the next word;

c. whether signed or unsigned arithmetic is used for fields declared signed; and
d. the maximum size of an individual field.

One or the other of the following declarations will be correct, depending on whether the compiler
allocates hit fields from left to right or from right to left.

struct FLOAT_FORMAT {

unsi gned i nt sign: 1;
unsi gned int exponent : 7;
unsi gned i nt fraction: 24;
1
struct FLOAT_FORMAT {
unsi gned int fraction: 24;
unsi gned int exponent: 7;
unsi gned i nt sign:1;
1

It can either be 2 or -2, depending on whether the compiler uses signed or unsigned arithmetic.

A union is being used as if it were a structure. On a machine with 32 bit integers and floats, the
second assignment will completely replace the value stored by the first, and the last assignment
will replace the first eight bits of the value stored by the second. The integer and floating-point
members therefore print as garbage, but the character prints correctly.

Pointers on C—Instructor’s Guide 71

14. The same member that was used to store the data must also be used to read it.

15. First, the member s would store the actual value of the string rather than a pointer to the value.
This means that the value would not have to be allocated elsewhere, which is an advantage. But
this entails a terrible disadvantage: The structure now contains enough space to store the largest
possible string, and nearly all of this space is wasted when integer and floating-point values are
stored. The original structure did not have this problem because it only contained a pointer to
the string value, not the value itself.

10.2 Programming Exercises

2. Though not mentioned in the problem, a correct solution must have some kind of t ype field.
The first solution is implemented exactly as the instructions specify.

/*
** Structure declaration for auto deal ership sal es records.
*/
struct | NFOL {
char cust _nane[21] ;
char cust _addr[41];
char nodel [21] ;
enum { PURE CASH, CASH LOAN, LEASE } type;
uni on {
struct {
fl oat nsr p;
fl oat sal es_price
fl oat sal es_t ax;
fl oat i censing fee;
} pure_cash;
struct {
fl oat nsrp
fl oat sal es_price
fl oat sal es_t ax;
fl oat i censing fee;
fl oat down_paynent ;
i nt | oan_durati on
fl oat i nterest _rate;
f | oat nont hl y_paynent ;
char bank[21] ;
} cash_|l oan;
struct {
fl oat nsrp
fl oat sal es_price
fl oat down_paynent ;
fl oat security deposit;
fl oat nont hl y_paynent ;
fl oat | ease_term
} |l ease;
} info;
b

Solution 10.2a infol.h

72 Chapter 10 Structures and Unions

The second factors fields common to all three types of sale out of the variant portion of the
record. There are still some duplicated fields, but none are common to all three variants.

/*
** | nproved structure declaration for auto deal ership sal es records.
*/
struct | NFO2 {
char cust _name[21] ;
char cust _addr[41];
char nodel [21] ;
fl oat nsrp
fl oat sal es_price
enum { PURE_CASH, CASH LOAN, LEASE } type;

uni on {

struct {
fl oat sal es_t ax;
fl oat i censing fee;

} pure_cash;

struct {
fl oat sal es_t ax;
fl oat i censing fee;
fl oat down_paynent ;
i nt | oan_durati on
fl oat interest _rate;

fl oat nmont hl y_paynent ;
char bank[21] ;

} cash_| oan;

struct {
fl oat down_paynent ;
fl oat security deposit;
fl oat nont hl y_paynent ;

fl oat | ease_term
} | ease;
} info;
1
Solution 10.2b info2.h
3. The correct answer depends on whether the machine you are using allocates bit fields from left
to right or from right to left. This answer is for the former; the order of the bit fields (but not
the union members) would be reversed for the latter.
/ *

** Declaration of a structure to access the various parts of a machine
** jnstruction for a particular nachine.
*/
t ypedef uni on
{

unsi gned short addr;

struct {

unsi gned opcode: 10;

Solution 10.3 continued . . .

Pointers on C—Instructor’s Guide 73

unsi gned dst _node: 3;
unsi gned dst _reg: 3;

} sgl _op;

struct {
unsi gned opcode: 4;
unsi gned src_node: 3;
unsi gned src_reg: 3;
unsi gned dst _node: 3;
unsi gned dst_reg: 3;

} dbl _op;

struct ({
unsi gned opcode: 7;
unsi gned src_reg: 3;
unsi gned dst _node: 3;
unsi gned dst_reg: 3;

} reg_src;

struct {
unsi gned opcode: 8;
unsi gned of f set: 8;

} branch;

struct {
unsi gned opcode: 16;

} msc;

} machi ne_i nst;

Solution 10.3 machinst.h

11

Dynamic Memory Allocation

11.1 Questions

1. Thiswill vary from system to system. There are several things that may affect the result on
PC-based systems, including the memory model in use, the amount of space in the data and/or
stack segment, the amount of available memory on the system, and so forth. The result on Unix
systems will depend on the amount of available swap space, among other things.

2. There are two explanations possible. Requesting smaller chunks may allow more memory to be
alocated because the amount of memory left over after the last allocation will be smaller. This
would make the total for the smaller requests larger. More likely, though, is that the total for the
smaller requests is smaller: this is due to the overhead of the extra space that mal | oc attaches to
the memory in order to keep track of the size of each allocated chunk.

6. Yes, dynamic alocation will use less stack space because the memory for the arrays will be
taken from the heap rather than the stack. Dynamic allocation of scalars will help only if the
values being allocated are larger than the size of a pointer, as it would be with a large structure.
There is no gain in dynamically alocating an integer because the pointer variable you must have
to keep track of it takes just as much space as the integer itself.

7. Memory leaks would be possible, but only when either the second or third allocations failed,
meaning that the program had nearly run out of memory anyway.

11.2 Programming Exercises

1. Thisinteresting part of thisis the need to declare a pointer other than voi d * in order to clear
the memory.

/*
** A function that perforns the same job as the library 'calloc’ function
*/

#i ncl ude <stdlib. h>
#i ncl ude <stdi 0. h>

Solution 11.1 continued . . .

75

76 Chapter 11 Dynamic Memory Allocation

void *
calloc(size t n_elenents, size t elenent_size)
{
char *new_nmenory;
n_el ements *= el ement _si ze;
new nenory = malloc(n_elenments);
if(new_nmenory !'= NULL){
char *ptr;
ptr = new_nenory;
while(—n_elenents >= 0)
*ptr++ = '\ 0’
}
return new_nenory;
}
Solution 11.1 calloc.c
3. The strategy used in this solution is to keep a dynamically allocated buffer in the r eadst ri ng
function. If this fills while reading a string, it is enlarged. The increment, DELTA, can be tuned
to achieve a balance between minimizing wasted space and minimizing the number of realloca
tions that occur. The assert macro is used to abort the program if any memory allocation fails.
A new chunk of memory is alocated for the copy of the string that is returned to the caller—this
avoids the overhead of dynamically growing the array from scratch each time a string is read.
/ *

** Read a string and return a copy of it in dynamically allocated nenory. There
** js no limt (other than the ambunt of dynami c nenory avail able) on the size
** of the string.

*/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <assert. h>
#defi ne DELTA 256

char *
readstring()

static char *buf fer = NULL;
static int buffer _size = 0;
i nt ch;
i nt | en;
char *bp;

bp = buffer;
len = 0;

Solution 11.3 continued . . .

Pointers on C—Instructor’s Guide 77

/*
** Gt characters one at a tine until a newwine is read or EOF is
** reached.

*/
do {
ch = getchar();
if(ch =="\n" || ch == EOF)
ch ='\0";
/*
** |f the buffer is full, make it bigger.
*/
if(len >= buffer_size){
buf fer _size += DELTA;
buffer = realloc(buffer, buffer_size);
assert(buffer != NULL);
bp = buffer + |en;
}
*bp++ = ch;
len += 1;
} while(ch I="\0");
/*
** Make a copy of the string to return.
*/

bp = malloc(len);
assert(bp '=0);
strcpy(bp, buffer);

return bp;
}
Solution 11.3 readstr.c
4. There are many variations on this program that are equally good. If the list were to be much
longer, it would be worth while to have a pointer to the end of the list in order to simplify the
insertions.
/ *

** Create a particular linked |ist of dynamically allocated nodes.

*/

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>
#i ncl ude <stdi o. h>

typedef struct NODE {

i nt val ue;
struct NODE *|ink;

} Node;
Node *

Solution 11.4

continued . . .

78 Chapter 11 Dynamic Memory Allocation

newnode(int val ue){
Node *new;
new = (Node *)mal |l oc(sizeof (Node));
assert(new!= 0);
new—>val ue = val ue;
return new,

}

mai n()

{
Node *head;
head = newnode(5);
head—>l i nk = newnode(10);
head—>l i nk—>l i nk = newnode(15);
head—>l i nk—>l i nk—>l i nk = 0;

}

Solution 11.4

Another good approach is to construct the list in reverse order.

linklist.c

12

Using Structures and Pointers

12.1 Questions
1. Yes, it can.

/*

** Look for the right place.

*/

while(*linkp !'= NULL & (*Iinkp)—>value < value)
linkp = & *1inkp)—>link;

/*
** Al|l ocate a new node and insert it.
* [
new = mal |l oc(sizeof(Node));
i f(new == NULL)
return FALSE;
new->val ue = val ue;
new—>l i nk = *|inkp;
*Iinkp = new;
return TRUE;

This version of the program uses one fewer variable, but it has three extra indirections so it will
take dightly longer to execute. It is aso harder to understand, which is its major drawback.

3. Ahead of other nodes with the same value. |If the comparison were changed, duplicate values
would be inserted after other nodes with the same value.

5. Each attempt to add a duplicate value to the list would result in a memory leak: A new node
would be alocated, but not added to the list.

6. Yes, but it is very inefficient. The simplest strategy is to take the nodes off the list one by one
and insert them into a new, ordered list.

79

80

Chapter 12 Using Structures and Pointers

12.2 Programming Exercises

/*

2. Firgt, the program for the unordered list.

** Find a specific value in node an unordered singly linked |ist.

*/

#include "singly linked |Iist _node. h"
#i ncl ude <stdio. h>

struct NODE *
sl _find(struct NODE *first, int desired_val ue)

{
for(; first I'= NULL; first = first—>link)
if(first—>value == desired_val ue)
return first;
return NULL;
}

Solution 12.2 sll_find.c
Technically, no change is required to search an ordered list, though the function can be made
more efficient with a minor change. If nodes are found whose values are greater than the desired
value, there is no need to continue searching. This is implemented by changing the test in the
f or loop to

first !'= NULL && first—>val ue <= val ue
3. This makes the function more complex, primarily because the root pointers can no longer be
manipulated in the same way as the node pointers.

/ *
** |Insert a value into a doubly linked list. frontp is a pointer to the root
** pointer to the first node; rearp is a pointer to the root pointer to the |ast
** node; and value is the new value to be inserted. Returns: 0 if the value is
** already in the list, -1 if there was no nenory to create a new node, 1 if the
** val ue was added successfully.
*/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude "doubly linked |ist node. h"

~ 0 -

nt
|

_insert(Node **frontp, Node **rearp, int value)
regi ster Node **fwdp;
regi ster Node *next ;
regi ster Node *newnode;

/*

Solution 12.3 continued . . .

Pointers on C—Instructor’s Guide 81

** See if value is already in the list; returnif it is. O herw se,

** allocate a new node for the value ("newnode" will point to it), and
** "next" will point to the one after where the new node goes.
*/

fwdp = frontp;
while((next = *fwdp) != NULL){

i f(next->val ue == val ue)
return O;

i f(next->value > val ue)
br eak;

fwdp = &next —>f wd;
}

newnode = (Node *)nmall oc(sizeof (Node));
i f(newnode == NULL)

return -1;
newnode—>val ue = val ue;

/*

** Add the new node to the |ist.
*/

newnode—>f wd = next ;

*fwdp = newnode;

if(fwdp !'= frontp)
i f(next !'= NULL)

newnode—>bwd = next->bwd;
el se
newnode—>bwd = *rearp;
el se
newnode—>bwd = NULL;
if(next !'= NULL)
next —>bwd = newnode;
el se
*rearp = newnode;
return 1,
}
Solution 12.3 dil_insb.c
4. Thisis agood exercise in examining a problem critically to determine exactly what needs to be
done. If implemented properly, the function is quite simple.
/*

** Reverse the order of the nodes in a singly linked |ist, returning a pointer
** to the new head of the I|ist.
*/

#i ncl ude <stdi o. h>
#i ncl ude "singly_linked_list_node.h"

Solution 12.4 continued . . .

82 Chapter 12 Using Structures and Pointers

struct NODE *
sl| _reverse(struct NODE *current)

{

struct NODE *previ ous;
struct NODE *next ;
for(previous = NULL; current != NULL;

current = next){

next = current—>link
current—>l i nk = previous;
previ ous = current;
}
return previous;
}
Solution 12.4 sll_rev.c
6. Note the chains of indirection in this program: t hi s—>bwd—>f wd and t hi s—>f wd—>bwd: if
either of these expressions had been used more than once, it might have been better to create
temporary variables to hold the values instead.
/ *

** Renmpove a specified node froma doubly linked Iist.
and the second points to the node to be

** to the root node for the |ist,
** renpved. TRUE is returned if
* [

<stdlib. h>

<stdi o. h>

<assert. h>

"doubl y_linked_Iist_node. h"

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#def i ne FALSE 0
#defi ne TRUE 1
i nt
dl | _renove(struct NODE *rootp,
{

regi ster Node *t his;

assert(delete !'= NULL);

/*

* %

it can be renobved

Find the node in the list and return FALSE i f

The first argunent points

ot herwi se FALSE i s returned.

struct NODE *del ete)

it is not there.

this = this—>fwd)

** Otherwi se, delete it and return TRUE
*/
for(this = rootp—>fwd; this !'= NULL;
if(this == delete)
br eak;
if(this == delete){

Solution 12.6

continued . . .

Pointers on C—Instructor’s Guide 83

/*
** Update fwd poi nter of the previ ous node.
*/
if(this—>bwd == NULL)
root p—>fwd = t hi s—>f wd;

el se
t hi s—=>bwd—>f wd = t hi s—>f wd;
/*
** Update bwd poi nter of the next node.
*/

if(this—>fwd == NULL)
root p—>bwd = t hi s—>bwd;

el se
t hi s—>f wd—>bwd = t hi s—>bwd;
free(this);
return TRUE
}
el se
return FALSE
}
Solution 12.6 dil_remv.c
7. The fact that nodes in the two lists differ in structure precludes using a single insertion function
for both lists; this is unfortunate, as the same logic is needed in each case. The declarationsin
the solution below should be in an include file if they are needed by any other source files.
/ *

** |nsert a word into a concordance list. The argunents are a pointer to the

** | ocation that points to the first node in the list, and a string contai ni ng
** the word to be inserted. The function returns TRUE if the string begins with
** g |etter and was inserted into the list, else FALSE

*/

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude <nal | oc. h>

#def i ne TRUE 1
#defi ne FALSE 0

/-k
** Declaration for the secondary node that holds an individual word.
*/
typedef struct WORD{
char *wor d;
struct WORD *next ;
1 Werd;

Solution 12.7 continued . . .

84 Chapter 12 Using Structures and Pointers

/*
** Declaration for the primry node that heads a list of words.
*/
typedef struct LIST {
char letter;
struct LIST *next ;
Wor d *word_|ist;
} List;
i nt
concordance_insert(List **|listp, char *the word)
{
i nt first _char;
Li st *current |ist;
Wor d *current _word;
Wor d **wor dp;
i nt conpari son;
Wor d *new_wor d;
/*
** Get the first character of the word and make sure it is valid.
*/

first _char = *the_word,;
if('islower(first _char))
return FALSE;

/*
** First, find the word |ist that begins with the right letter. If it
** does not exist, create a new one and add it.

*/
while((current_list = *listp) != NULL
&% current list—>letter < first_char)
listp = ¤t _|ist—>next;
/*

** |f current_list is NULL or points to a node with a letter |arger
** than what we want, we’ve got to create a new word |list and insert it
** here in the primary list.

*/
if(current list == NULL || current list—>letter > first _char){
Li st *new | i st;
new |ist = (List *)nmalloc(sizeof(List));
if(new.list == NULL)
return FALSE;
new |list—>letter = first_char;
new |ist—>word |ist = NULL;
new | i st—>next = current |ist;
*listp = new |ist;
current _list = new |ist;
}

Solution 12.7 continued . . .

}

Solution 12.7

Pointers on C—Instructor’s Guide

/*
** current _list now points to the node that heads the proper word |ist.
** Search down through it |ooking for our word.
*/
wordp = ¤t |ist—>word_|ist;
while((current_word = *wordp) !'= NULL){

conparison = strcnp(current_word->word, the word);

i f(conparison >= 0)

br eak;
wor dp = ¤t _wor d—>next ;

}

/*
** | f current_word not NULL and conparison is 0, the word already is in
** the |ist.
*/
if(current_word != NULL && conparison == 0)
return FALSE;

/*
** Create a new node for the word.
*/
new word = (Word *)nmal |l oc(sizeof (Wrd));
if(new word == NULL)
return FALSE;

new word—>word = malloc(strlen(the word) + 1);
i f(new word->word == NULL)
return;

strcpy(new word->word, the word);

/*

** Link the new node into the list.
*/

new_wor d—>next = current _word;
*wordp = new _word;

return TRUE;

85

concord.c

13

13.1 Questions

Advanced Pointer Topics

2. Aswith al pointer arithmetic, the value one is scaled to the size of whatever the pointer is point-
ing at, which in this case is a pointer to a character. The result is that pt r is advanced to point
at the next element of the array.

3. Itisapointer to a pointer to a pointer to an integer, and is used like this:

arg

- === = == - === = == --q4---—=> 25

/K An integer
A pointer to an integer
A pointer to a pointer to an integer
A pointer to a pointer to a pointer to an integer

The expression ***ar g gets the value of the integer.

0 @

- ® 20 T ®

The address of p.

The entire value (both fields) of p.

The value of the x field of p.

The address of the variable a.

Illegal, as p is not a pointer to a structure.
Illegal, as p is not a pointer to a structure.

The value stored in a, which is the address of p.

—> has higher precedence than *, so this is the same as * (b—>a) , which isillegal because
b is not a pointer to a structure.

—> has higher precedence than *, so this is the same as * (b—>x) , which isillegal because
b is not a pointer to a structure.

87

88

Chapter 13 Advanced Pointer Topics

10.

j- Illegal, as p is not a pointer to a structure.

k. (*b) givesthevalue of a, so thisis equivaent to a—>a, which isillegal because the struc-
ture to which a points has no field which is named a.

I. (*b) givesthe value of a, so thisis equivalent to a—>x, which gives the value of the x
field of p.

m. *b gives the value of a, so thisis equivalent to * a, which gives the entire value (both
fields) of p.

Copies the values from y into x.
Illegal, as a is a pointer but y is not.
Copies the pointer value from b into a.

o 0 T o

Illegal, as ais a pointer but *b is not.
e. Copies the values from y into x.

If the filename exceeds 15 characters (this one does not), it will overflow the memory allocated
to hold the string literal. If the initial value of the pathname is ever changed, you must
remember to change the literal constant ten also. But the real problem is that it overwrites the
string literal, the effects of which are not defined by the Standard. The solution is to declare
pat hnane as an array, not a pointer.

The array is only as large as needed to hold its initial value, so appending anything to it
overflows the memory array, probably overwriting some other variables. The solution is to make
the array enough larger than the initial value to hold the longest filename that will be appended
to it later. A potential problem is the use of st r cat ; if this pathname prefix is supposed to be
used with several different filenames, appending the next one with st r cat will not produce the
desired result.

If the string in fi | enane is longer than nine characters, it will overflow the array. If the length
of a pathname has an upper bound, the array should be declared at least that large. Otherwise,
the length of the filename can be computed and used to obtain memory dynamically.

13.2 Programming Exercises

/*

2.

This function is probably not terribly useful, as it is nearly as easy to traverse the list on your
own as it is to call a general purpose function to do it. On the other hand, the paradigm is valu-
able enough to justify this exercise.

Note that the function still needs to know where the link is in the node structure, so it isn’t
al that general after all.

** Traverse a singly linked list. The callback function will be called for each

* %

*/

node in the list, and it will be passed a pointer to the current node.

#i ncl ude "node. h"
#i ncl ude <stdi o. h>

Solution 13.2

continued . . .

Pointers on C—Instructor’s Guide 89

voi d
sl| _traverse(Node *current, void (*func)(Node *node)){
while(current !'= NULL){
func(current);
current = current—>link

}
}
Solution 13.2 sll_trav.c
3. Severa of the cases do their work directly; this code must be moved into functions. The main
difficulty here is to come up with a common prototype that will serve the needs of al of the
necessary functions; it must contain each argument used by any function. The new functions
must use the common prototype, and the existing functions must be modified to match it. Most
of the functions will end up with at least one argument that they do not need. A pointer must be
passed to current so that the appropriate functions can modify it.
/ *

** Mbdified prototypes for existing functions (the functions thensel ves nust be
** nodified to match).

*/
voi d add_new_ trans(Node *list, Node **current, Transaction *trans);
voi d del ete trans(Node *list, Node **current, Transaction *trans);
voi d search(Node *list, Node **current, Transaction *trans);
voi d edit(Node *list, Node **current, Transaction *trans);
/*
** Definitions of the new functions that are needed
*/
voi d
forward(Node *list, Node **current, Transaction *trans)
{
*current = (*current)-—>next;
}
voi d
backwar d(Node *list, Node **current, Transaction *trans)
{
*current = (*current)-—>prev;
}
/*
* The junp table itself.
*/
voi d (*function[])(Node *list, Node **current, Transaction *trans) = {

add_new_trans,
del ete_trans,
f orward,
backwar d,

sear ch,

edi t

Solution 13.3 continued . . .

90 Chapter 13 Advanced Pointer Topics

s

#define N _TRANSACTIONS (sizeof (function) / sizeof(function[O]))

/ *

*x I nvoke the proper function to performa transaction (this is where the
** switch statenent used to be).

*/

if(transaction—>type < 0 || transaction_type >= N_TRANSACTI ONS)

printf("lIllegal transaction type!\en");

el se

function[transaction—>type](list, ¤t, transaction);

Solution 13.3 jump_tbl.c
Note that the solution is considerably longer than the original code. Thisis primarily due to the
overhead of creating a function to perform a one-line-of-code task. As the number of transac-
tions grows, though, the jump table combined with the separate transaction functions will be
more manageable than a large swi t ch statement.

4. This function is patterned after the gsort function provided in the ANSI C library. The only
two tricks are locating the beginning of each array element and interchanging two elements. The
element length is used for both tasks.

/ *

** Sort an array of arbitrary fixed-length elements. The caller passes a
** pointer to a function which conpares two el enents.

*/
/*
*x Exchange two el enents with each ot her
*/
swap(char *i, char *j, int recsize)
{
char X;
whil e(recsize— > 0){
X = *i;
*i++ = *J;
*j++ = X;
}
}
/*
*x Sort the array.
*/
voi d
sort(char *base, int nel, int recsize, int (*conp)(char *, char *))
{
reg char *i;
reg char i
reg char *| ast ;

Solution 13.4 continued . . .

Pointers on C—Instructor’s Guide 91

|ast = base + (nel — 1) * recsi ze;
for(i = base; i < last; i += recsize)
for(j =i +recsize; j <=last; j += recsize)
if(comp(i, j) >0)
swap(i, j, recsize);
}
Solution 13.4 sort.c
5. A common mistake is to modify either the ar gv pointer list or the arguments themselves. This
solution uses register declarations for efficiency. The ar gt ype function, called from one place,
was written as a separate function solely for clarity.
/ *

** Parse the command |ine argunents for processing by the caller’s functions.
*/

#def i ne TRUE 1
#defi ne FALSE 0

#def i ne NULL 0
#defi ne NUL "\ O’

enum { NONE, FLAG ARG };

/*
*x Det erm ne whet her the argunent is a flag or one that requires a val ue.
*/
argtype(register int ch, register int control)

whil e(*control != NUL)

if(ch == *control ++)
return *control =="'+ ? ARG : FLAG

return NONE;
}
/*
*x Process the argunents.
*/
char **

do_args(int ac, reg char **av, char *control,
void (*do_arg)(int, char *), void (*illegal _arg)(int))

{
register char *argp;
regi ster int ch;
regi ster int ski p_ar g;
while((argp = *++av) != NULL && *argp == '-"){

ski p_arg = FALSE;
while(!'skip arg & (ch = *++argp) != NUL){
switch(argtype(ch, control)){

Solution 13.5 continued . . .

92 Chapter 13 Advanced Pointer Topics

case FLAG

(*do_arg)(ch, NULL);

br eak;

case ARG

if(*++argp !'= NUL || (argp = *++av)

(*do_arg)(ch, argp);
skip_arg = TRUE;
br eak;

}
(*illegal _arg)(ch);

return av;
case NONE:
(*illegal _arg)(ch);
br eak;
}
}
}
return av;

}
Solution 13.5

= NULL){

do_args.c

14

The Preprocessor

14.1 Questions

2.

First, a well chosen name gives the reader some idea of the meaning of a quantity, whereas a
literal constant conveys only its value. Second, literal constants that are used more than once are
easier to change if they are defined in a single place.

#def i ne DEBUG PRI NT(fnt, expr) \
printf("File %, line %: % =" \
fmt "\n", \
__FILE__, __LINE__, \

#epxr, expr)
The macro is invoked like this:
DEBUG PRINT("%l", x * y + 3);

and produces output like this:

File min.c, line 25: x *y +3 = -4
a 323
b. 535
c. 242
d 24 12
Because put char isinvoked so often, speed of invocation was considered of primary impor-

tance. Implementing it as a macro eliminates the overhead of a function call.

Nothing is wrong. They each include the other, and it first appears that the compiler will read
them alternately until its include nesting limit is reached. In fact this does not happen because of
the conditional compilation directives. Whichever file is included first defines its own symbol
and then causes the other to be included. When it tries to include the first one again, the entire
file is skipped.

93

o) Chapter 14 The Preprocessor

9. Unfortunately, si zeof is evaluated after the preprocessor has finished its work, which means

14.2 Programming Exercises

that this won't work. An alternate approach would be to use the values defined in the
limts. h includefile.

2. The function would be more complex if it had to verify that exactly one of the cpu-type symbols

/*

** Return a code indicating which type of cpu the programis runni ng on
** depends on the proper synbol

*/

#i ncl ude "cpu_types. h"

fpu_t ype()

#i f defined(VAX)

return
#el i f defi ned(
return
#el i f defi ned(
return
#el i f defined(
return
#el i f defi ned(
return
#el i f defi ned(
return
#el i f defi ned(
return

t#el se

return

#endi f
}

Solution 14.2

CPU_VAX;
MBS000)
CPU_68000;
M58020)
CPU_68020;
1 80386)
CPU_80386;
X6809)
CPU_6809;
X6502)
CPU_6502;
U3B2)
CPU_3B2;

CPU_UNKNOWN;

was defined. It does not, though, so asimple #i f/ #el i f sequence does the job. Note that
many compilers predefine symbols for precisely this purpose. Consult your compiler’s documen-
tation for details.

Thi s

bei ng defined when the program was conpi l ed.

cpu_type.c

15

Input/Output Functions

15.1 Questions

3.

The fact that it failed at all indicates that something is wrong; the most likely possibility is a bug
in the program. By not checking, this bug goes undetected and may cause problems later. Also,
the FI LE structure used for that stream will not be released. There is a limited number of these

available, so if this happens very often, the program will run out of them and be unable to open

any more files.

Space is always left for the NUL byte, so with a buffer size of one there is no room for any char-
acters from the stream. With a buffer size of two, characters are read one by one.

The first value can take up to six characters, the second at most one, and the third at most four.
Counting the two spaces and the terminating NUL byte, the buffer must be at least 14 bytes long.

This is quite unsafe as there is no way to tell how large the buffer must be; strings may be any
length, so if the length of a is not checked prior to this statement, the buffer might be overrun no
matter how largeit is.

It rounds. If 3.14159 is printed with a code of % 3f the result is 3. 142.

9. Write a program to store al possible integer values in er r no and then call perror. You must

10.

11.

12.

13.

14.

watch the output, as garbage may be produced for values that are not legitimate error codes.

Because they change the state of the stream. The call by value semantics of C would not allow
the caller's stream variable to be changed if a copy if it were passed as the argument.

The mode r + does the job. The w modes truncate the file, and the a modes restrict writing to
the end of the file.

It allows a particular stream to be reopened to a new file. For example, in order for a program
that uses pri nt f to begin writing to a different file, the program would have to reopen st dout .
This function is the reliable way to do this.

It is not worth it. Only if a program is not fast enough or not small enough should you spend
time thinking about things like this.

The results depend on the system, but it won't be 3!

95

96 Chapter 15 Input/Output Functions

15. The strings will be left justified. At least six characters, but no more than ten, will be printed.

15.2 Programming Exercises

1. This program is quite straightforward.
/*
** Copy standard input to standard output, one character at a tine.
=

#i ncl ude <stdi o. h>

mai n()
{
i nt ch;
while((ch = getchar()) != ECF)
put char(ch);
return EXI T_SUCCESS;
}
Solution 15.1 progl.c
3. The buffer need not be made any larger for this, but it is reasonable to increase it. The main
change here is to use f get s to ensure that the buffer is not overrun by longer input lines.
/ *

** Copy standard input to standard output, one line at a time. Lines > 256
** pytes long are copied 256 bytes at a tine.
*/

#i ncl ude <stdi o. h>
#def i ne BUFSI ZE 256 [* 1/0O buffer size */

mai n()

{
char buf [BUFSI ZE] ;

whil e(fgets(buf, BUFSIZE, stdin) != NULL)
fputs(buf, stdout);

return EXI T_SUCCESS;
}

Solution 15.3 prog3.c

4. Because two filenames must be entered, this is simplified by writing a function to read and open
afile. The file mode must then be passed as an argument; this solution also passes a string used
as a prompt.

/*

Pointers on C—Instructor’s Guide 97

** This programreads two file names and then copies data fromthe input file
** to the output file one line at a tine.

*/

#i ncl ude <stdi o. h>

#defi ne BUFSI ZE 256 /* 1/O buffer size */

/*
* %
* %
* %

* %

This function pronpts for a fil enane,
open the file.
term nates.

reads the nane,
Any errors encountered are reported before the program
Note that the gets function strips the trailing newine off

and then tries to

of the file name so we don’t have to do it oursel ves.

pronpt);

*/
FI LE *
openfile(char *pronpt, char *node)
{
char buf [BUFSI ZE] ;
FI LE *file;
printf("% filename? ", pronpt);
if(gets(buf) == NULL){
fprintf(stderr, "Mssing % file nane.\n",
exit(EXI T_FAILURE);
}
if((file = fopen(buf, nmode)) == NULL){
perror(buf);
exit(EXIT_FAI LURE);
}
return file;
}
/*
** Mai n functi on.
*/
i nt
mai n()
{
char buf [BUFSI ZE] ;
FI LE *input ;
FI LE *out put ;
FI LE *openfile();
i nput = openfile("lnput”, "r");
out put = openfile("Qutput”, "wW');
whil e(fgets(buf, BUFSIZE, input) != NULL)
fputs(buf, output);
Solution 154

continued . . .

98 Chapter 15 Input/Output Functions

fclose(input);
fcl ose(output);

return EXI T_SUCCESS;

}
Solution 15.4 prog4.c
5. The only change here is that the lines are analyzed in a specific manner before being written; this
change is al that is shown below.
/*
** Same program as before, but now the sumis conputed of all lines that begin
** with an integer.
*/
i nt val ue, total = 0;
whil e(fgets(buf, BUFSIZE, input) != NULL){
i f(sscanf(buf, "%l", &alue) == 1)
total += val ue;
fputs(buf, output);
}
fprintf(output, "%l\en", total);
Solution 15.5 prog5.c
6. The fact that the string palindrome function exists makes this problem trivial. The only reason
this short program rates two stars is that it takes an open mind to think of the approach. A 64
bit integer would use at most 20 digits, so the 50 character buffer is large enough to handle any-
thing that contemporary computers can dish out.
/*
** Determ ne whether or not an integer value is a palindrone.
*/
/*
* % Prototype for the string palindrone function from chapter 9.
*/
extern int pal i ndrome(char *string);
i nt

numeri c_pal i ndrone(int val ue)

{

char string[50];

/*

** Convert the nunmber to a string and then check the string!
*/

sprintf(string, "%l", value);

Solution 15.6

continued . . .

Pointers on C—Instructor’s Guide 99

return palindronme(string);

}
Solution 15.6

n_palind.c

7. The limitation to at most 10 members makes it possible (if tedious) to do this with f get s and

/*

sscanf. Assuming a maximum of three digits (plus one separating space) per age, a buffer of
40 characters would be adequate. However, the problem specification does not say that the ages
will be separated by exactly one whitespace character, so this solution uses a buffer of 512 char-
acters instead. If you know something about the nature of the input (e.g., it was created with an
editor whose maximum line size is 512 bytes), then this approach is fine. Otherwise, it is risky
and you should dynamically allocate a buffer that can be extended whenever aline is found that
is too long.

** Conmpute the average age of fam |y nenbers. Each line of input is for one

** famly;
*/

it contains the ages of all famly nenbers.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#defi ne BUFFER_SI ZE 512 [* size of input buffer */
i nt
mai n()
{
char buf fer[BUFFER_SI ZE];
/*
** Get the input one line at a tine.
*/
whil e(fgets(buffer, BUFFER Sl ZE, stdin) != NULL){
i nt age[10];
i nt nmenber s;
i nt sum
i nt i

Solution 15.7

/*
** Decode the ages, renenberi ng how many there were.
*/
menbers = sscanf(buffer, "% % % % % % % % % %",
age, age + 1, age + 2, age + 3, age + 4, age + 5, age + 6,
age + 7, age + 8, age + 9);

if(nenbers == 0)

conti nue;
/*
** Conmpute the average and print the results.
*/

continued . . .

100 Chapter 15 Input/Output Functions

sum = 0;
for(i =0; i < nenbers; i += 1)
sum += age[i];

printf("%.2f: %", (double)sum/ nenbers, buffer);

7

ages.c

8. While not explicitly specified in the problem statement, an important consideration is what to do
when the file being dumped does not contain an even multiple of 16 bytes. A simplistic
approach is to ssimply report the missing bytes as zero. The solution below constructs each out-
put line in a buffer in memory; this makes it easier to print only the data that appears in a partial
last line while still maintaining the proper format. The program would be easier to modify when
someone comes along and wants the format changed (as is inevitable) had defined names been

}

Solution 15
/*
** Prijnt
** given
* [
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#defi ne
/*
* %
* [
voi d
dunmp(FI
{

Solution 15

used for the numbers related to the format rather than literal constants.

an hexadeci mal dunp of the specified file. |If no filename argunent is

, print a dunp of the standard input instead.

<stdi 0. h>
<stdlib. h>
<nmenory. h>
<ct ype. h>

BUFFER_SI ZE 64

Function to dunp the contents of a stream

LE *stream)

| ong of f set;
unsi gned char data[16];
i nt | en;

char buf fer[BUFFER Sl ZE];

/*

** |nitialize the buffer that will be used for output.
*/

nenset (buffer, ' ', BUFFER SIZE — 1);

buffer[45] ="'*";

buffer[62] ="'*";

buffer[BUFFER SIZE — 1] = '\0";

of fset = 0;
while((len = fread(data, 1, 16, stream)) > 0){

.8

continued . . .

Solution 15.8

Pointers on C—Instructor’s Guide 101

char *hex_ptr;

char *char _ptr;

i nt i;

/*

** Start building the output buffer with the offset.
*/

sprintf(buffer, "9%96X ", offset);

/*

** Prepare pointers to the hex and character portions of the
** puffer and initialize themto spaces.

*/

hex ptr = buffer + 8;

char_ptr = buffer + 46;

menset (hex_ptr, ' ', 35);
menset (char_ptr, ' ', 16);
/*

** Now translate the data to both of the output forms and store
** it in the buffer.

*/
for(i =0; i <len; i +=1){
/*
** Convert the next character to hex. Mist overwite
** the NUL that sprintf inserts with a space.
*/
sprintf(hex_ptr, "992X", data[i]);
hex_ptr += 2;
*hex_ptr ="~ 7 ;
/*
** | eave a space between each group of 4 values in the
** hex portion of the |ine.
*/
if(i %4 == 3)
hex_ ptr ++;
/*
** | f the character is printable, put it in the char
** portion of the line, else put a dot in.
*/
if(isprint(data[i]) || data[i] ==" ")
*char_ptr++ = data[i];
el se
*char _ptr++ = ".";
}
/*

** Print the line and then update the offset for the next tine
** through the | oop.
*/

continued . . .

102 Chapter 15 Input/Output Functions
puts(buffer);
of fset += | en;
}
}
/ *
*x Main program Dunp the file (if there is an argunent) or stdin.
*/
i nt
mai n(int ac, char **av)
{
if(ac <= 1)
dunmp(stdin);
el se {
FI LE *stream
stream = fopen(av[1], "rb")
i f(stream == NULL){
perror(av[1]);
exit(EXI T_FAI LURE);
}
dunp(stream);
fcl ose(stream);
}
return EXI T_SUCCESS;
}
Solution 15.8
10. Thisis afair sized program; here is one way of doing it.
/ *

** This program conputes a checksum for each of the specified input files.

** result is printed either to the standard out put,

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#def i
#def i

/*
*/
char

/*

* %

*/

ne TRUE
ne FALSE

CQut put

1
0

option flag

file_ output = FALSE;

Functi on prototypes

Solution 15.10

or to a file.

hex_dump.c

The

continued . . .

Pointers on C—Instructor’s Guide

char **do_args(char **);
unsi gned short process(FILE *);
voi d print(unsigned short, char *);
/*
** Mai n function. Parse argunents and process each file specified.
*/
main(int ac, char **av)
{
FI LE *f; [* streamto read from */
unsi gned short sum [* checksum val ue */
/*

** Process option argunents. do_args returns a pointer to the first
** file nanme in the argunent |ist.

*/

av = do_args(av);

/*
** Process the input files.
*/
if(*av == NULL){
/*
** No files were given, so read the standard input.
*/
if(file_output){
fprintf(stderr, "—f illegal with standard i nput\n");
exit(EXI T_FAILURE);
}
sum = process(stdin);
print(sum NULL);
}
el se

/*

** For each file given: open it, process its contents, and print

** the answer.
*/
for(; *av != NULL; ++av){
f = fopen(*av, "r");
if(f == NULL)
perror(*av);

el se {
sum = process(f);
fclose(f);
print(sum *av);
}
}
return EXI T_SUCCESS;
}
/*

103

Solution 15.10 continued . . .

104 Chapter 15 Input/Output Functions

* % Process a file by reading its contents, character by character, and
** calling the appropriate sunm ng function
*/

unsi gned short
process(FILE *f)

{
unsi gned short sum /* current checksum val ue */
i nt ch; /* current char fromthe file */
sum = 0O;
while((ch = getc(f)) !'= ECF)
sum += ch;
return sum
}
/*
*x Print the checksum This either goes to the standard output or to a
** file whose nane is derived fromthe input file name
*/
voi d
print(unsigned short sum char *in_nane)
{
char *out _nane; /* nane of output file */
FI LE *f; /* stream for opening output file */

if(!'file_output)
printf("%\n", sum);
el se {
/*
** Al|locate space to hold output file name. It needs to be 5
** pytes |onger than input nane to hold ".cks" and the
** term nating NUL byte.
*/
out _nane = malloc(strlen(in_name) + 5);
i f(out_nanme == NULL){
fprintf(stderr, "malloc: out of nenory\n");
exit(EXI T_FAILURE);

}
strcpy(out_nane, in_nane);
strcat(out_nane, ".cks");

= fopen(out_name, "wW');
f(f == NULL)
perror(out_nane);

f
i

el se {
fprintf(f, "%\n", sum);
fclose(f);

}

free(out_nane);

Solution 15.10 continued . . .

Pointers on C—Instructor’s Guide 105

}
}
/*
** Process option argunents. Return a pointer to the first nonoption
** argunent, which is the beginning of the list of file names.
*/
char **
do_args(char **av)
{
/*
** Look at each conmand |ine argunent, one by one.
*/
while(*++av != NULL && **av == '){
/*
** | ook at each character in each argunment, one by one.
*/
while(*++*av !'="\0"){
/*
** Record each option that was given.
*/
switch(**av){
case 'f’':
file_ output = TRUE
br eak;
def aul t:
fprintf(stderr, "Illegal option: %\n", **av);
br eak;
}
}
}
/*
** Value to be returned is the pointer to the place in the argunment |i st
** just after the options ended.
*/
return av;
}
Solution 15.10 cksum.c

11. There are innumerable details that were not specified in the description of the program, so
student’s answers may vary in many areas. The solution shown here contains three modules:
mai n. ¢ obtains the command line argument and implements the transaction processing loop,
pr ocess. ¢ implements the functions needed to decode and process the transactions, and i o. ¢
implements the functions to open, read, write, and close the inventory file. Function prototypes
and other definitions needed by these modules are found in the associated header files.

There is an additional header file, part . h, which contains definitions relating to the struc-
ture that holds information about a part. t ypedef s are used to help ensure that variables are
declared with their proper types. This also makes it easier to change the type of a variable later
if the need arises. The declarations for TRUE and FALSE don't really have anything to do with a

106 Chapter 15 Input/Output Functions

/*

part, and appear in part . h only because there was no better place to put them. A larger pro-
gram might have enough global definitions to justify putting them in a separate include file.

** Declarations for the sinple inventory system

*/

/*
* %
* %
* %
*/
#def i ne
#def i ne

t ypedef
t ypedef
t ypedef

t ypedef

} Part;

/*
*/
#defi ne
#def i ne

The part structure holds all the information about one part, except for
the part nunber that determines where the part is stored in the file.
Part descriptions may be at nost 20 characters | ong.

MAX_DESCRI PTI ON 20
DESCRI PTI ON_FI ELD LEN (MAX_DESCRIPTION + 1)

unsi gned | ong Part nunber
unsi gned short Quantity;
doubl e Val ue;

struct {

char descripti on[DESCRI PTI ON_FI ELD LEN] ;
Quantity quantity;

Val ue total val ue;

Bool ean const ants

TRUE 1
FALSE O

Solution 15.11a part.h

/*
** Main

The transaction loop in mai n. ¢ has no body because pr ocess_request does all the work
of reading and processing one transaction. Another common paradigm is to separate the reading
and the processing of transactions into different functions; in that case, the main transaction loop
will look something like this:

while((trans = read_request()) != NULL)
process_request(trans);

with the first function returning a pointer to a structure containing al the information on one
transaction.

program for sinple inventory system Opens the inventory file and

** perfornms the main transacti on processing | oop

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

Solution 15.11b continued . . .

Pointers on C—Instructor’s Guide 107

#i ncl ude "part.h"
#i ncl ude "io. h"
#i ncl ude "process. h"

i nt
main(int ac, char **av)
{ if(ac 1= 2){
fprintf(stderr, "Usage: inventory inv—filenane\n");
return EXI T_FAlI LURE
}
if(open file(av[1])){
whi | e(process_request ())
close file();
}
return EXI T_SUCCESS;
}
Solution 15.11b main.c

Note the use of explicit field widths in the pri nt _al | function in process. c. This pro-
duces a neat table with all the columns lined up. Using %-*. *s as the format for the description
field allows the width (MAX_DESCRI PTI ON) to be given in the arguments to pri nt f rather than
being hard-coded in the format. This simplifies changing the width in the future.

The process_request function decodes transactions by reading a line of input and
attempting to decode it with various sscanf statements. End of file is detected and handled as a
synonym for the end command.

Requests whose formats are identical are grouped together and handled by a single
sscanf. Each sscanf attemptsto decode one field more than there ought to be in order to
detect the entry of extra data.

The length of the description given in a new transaction is limited by the format code used;
if a description is entered that exceeds this length, the scan will fail. It is unfortunate that
sscanf, unlike pri nt f, has no provision for giving the field width as an argument; the conse-
guence of this is that the description length must be hard-coded in the format code, making
future changes more difficult.

/ *

** Functions to process a transaction

*/

/ *

* Process one transaction. Pronpts on the standard output and reads the
** next request fromthe standard input and processes it. Returns FALSE if
** the request was "end" (meaning there is no more work to do) and TRUE

** ot herw se.

*/

Solution 15.11c continued . . .

108 Chapter 15 Input/Output Functions

i nt process_request(void);
/ *
** Si ze of the | ongest request we will accept. This is |arge enough for
** the request type, a 20 character description, and a few | ong integers.
*
/
#def i ne MAX REQUEST LI NE LENGTH 100
Solution 15.11c process.h
/ *

** Transaction decodi ng and processing for the inventory system
*/

#i ncl ude <stdi o. h>
#i ncl ude "part. h"

#i ncl ude "io. h"

#i ncl ude "process. h"

/*

* % These functions inplenent the various transactions. They are static
** because they are called only by the transacti on decodi ng function that
** appears later in this nodule.

*/

/*

*x t ot al

*/

static void
total (void)

{
Part _nunber p;
Par t part;
Val ue total val ue;
/*
** Read each part and add its value to the total
*/
total val ue = 0;
for(p = last_part_nunber(); p>0; p—=1)
if(read_part(p, &part))
total value += part.total val ue;
printf("Total value of inventory = %2f\n", total val ue);
}
/*
*x new_part
*/

static void
new part(char const *description, Quantity quantity, Value price_each)

{

Solution 15.11d continued . . .

Pointers on C—Instructor’s Guide 109

Par t part;
Part nunber part _nunber;

/*

** Copy the argunents into the Part structure.
*/

strcpy(part.description, description);
part.quantity = quantity;

part.total value = quantity * price_each

/*

** CGet the smallest part nunber that is not currently being used and
** wite the information for this part.

*/

part _nunber = next_part_nunber();

wite part(part_nunber, &part);

printf("% is part nunmber % u\n", description, part_nunber);

}

/*

*x buy and sel

*/

static void

buy sell (char request _type, Part_nunber part_ nunber, Quantity quantity,
Val ue price_each)

{

Par t part;

if('read part(part_nunber, &part))
fprintf(stderr, "No such part\n");

el se {
if(request _type == "'Db"){
/*
* % Buy
*/

part.quantity += quantity;
part.total value += quantity * price_each

}
el se {
/*
** Sell: nake sure we've got enough to sell. If so,
** compute the profit on this sale.
*/

Val ue uni t _val ue;

if(quantity > part.quantity){
printf("Sorry, only %wu in stock\n",
part.quantity);
return;

}

unit _value = part.total value / part.quantity;

Solution 15.11d continued . . .

110 Chapter 15 Input/Output Functions

part.total value —= quantity * unit_val ue;
part.quantity —= quantity;
printf("Total profit: $% 2f\n",

quantity * (price_each — unit_value));

}
wite part(part_nunmber, &part);
}
}
/*
ik "del et e"
* [

static void
del ete(Part _nunber part_nunber)

{
Par t part;
if(!'read_part(part_nunber, &part))
fprintf(stderr, "No such part\n");
el se {
part.description[] 0] ="'\0;
wite part(part_nunber, &part);
}
}
/*
** “print"
*/

static void
print(Part_nunmber part_nunber)

{
Par t part;
if(!'read_part(part_nunber, &part))
fprintf(stderr, "No such part\n");
el se {
printf("Part nunber % u\n", part_nunber);
printf("Description: %\n", part.description);
printf("Quantity on hand: %wu\n", part.quantity);
printf("Total value: %2f\n", part.total value);
}
}
/*
*x "print all"
*/

static void

print_all(void)

{
Part nunber p;
Par t part;

Solution 15.11d continued . . .

Pointers on C—Instructor’s Guide 111

printf("Part number Description Quantity "
"Total value\n");

printf(" "
L \ n") ;

for(p =1, p <= last_part_nunber(); p += 1)
if(read_part(p, &part))
printf("%llu 9%*.*s 9% 0hu 9%1.2f\n",
p, MAX_DESCRI PTI ON, MAX_DESCRI PTI ON
part.description, part.quantity,
part.total val ue);

}

/*

*x Decode and process one transaction

*/

i nt

process_request(void)

{
char request[MAX REQUEST LINE LENGTH];
char request _type[10];
char descri pti on[DESCRI PTI ON_FI ELD LEN];
Part nunmber part_nunber;
Quantity quantity;
Val ue price_each;

char left _over[2];

/*

** Pronpt for and read the request. |If end of file is reached, return
** FALSE to stop the nmin transaction | oop.

*/

fputs("\nNext request? ", stdout);
if(fgets(request, MAX REQUEST LINE LENGIH, stdin) == NULL)
return FALSE

/*

** See what type of request it is and decode the argunents. Note the
** attenpt to extract one extra string (left _over) from each request to
** ensure that the user doesn’'t enter too nuch data.

*/

/*

** "end" and "total": take no argunents

*/

i f(sscanf(request, "%0s %s", request _type, left _over) == 1 &&

(strcmp(request_type, "end") ==
|| strcnp(request _type, "total”) == 0)){
if(request _type[0] =="¢e)
/*
** *end request: return FALSE to stop the main
** transaction | oop.

*/

Solution 15.11d continued . . .

112 Chapter 15 Input/Output Functions

return FALSE;

el se
total ();
}
/*
** "new': requires description, quantity, cost each. It uses the next
** avail abl e part nunber.
*/
el se if(sscanf(request, "new %R0[",], %u, %f %s",
description, &quantity, &price_each, left _over) == 3){
new part(description, quantity, price_each);
}
/*
** "huy" and "sell": require part—nunmber, quantity, price each
*
/

el se if(sscanf(request, "%0s % u, %u, %f 9%s", request_type,
&part nunber, &quantity, &price_each, left _over) == 4 &&
(strcnp(request _type, "buy") ==
|| strcnp(request_type, "sell") ==0)){
buy sell (request _type[0], part_nunber, quantity,
price_each);

}

/*
** "delete" and "print": require a part nunber
*/
el se if(sscanf(request, "%0s % u %s", request _type, &part_ nunber,
left _over) == 2 &&
(strcnp(request _type, "delete") == 0
|| strcnp(request _type, "print") == 0)){
if(request _type[0] =="d)
del ete(part_nunber);

el se
print(part_nunber);
}
/*
** "print all": takes no argunents.
*/

el se if(sscanf(request, "print %40s %s", request_type, |left_over) ==
&& strcnp(request _type, "all") == 0){
print_all();
}

/*
** |f nothing else worked, it nust be an error. Print an error nessage
** if the input |ine was not enpty.
*/
el se {
i f(sscanf(request, "%0s", request type) == 1)

Solution 15.11d continued . . .

Pointers on C—Instructor’s Guide 113

fprintf(stderr, "Invalid request: %\n", request_type);
}
/*
** Return TRUE so that the main transaction | oop keeps goi ng.
*/
return TRUE;
}
Solution 15.11d process.c

Defining all of the I/O functions in one module simplifies accessing the inventory file from
other parts of the program as well as enhancing future maintainability. This module uses the part
number to determine the position in the file where a part is stored; f seek is used to position the
file to the proper location before reading or writing. Because there is no part number zero, that
location in the file is used to store information about the inventory file itself, specifically, the
largest part number currently in use and the part number of the earliest deleted part in the file.
In principle, these values need not be written to the file until just before it is closed. This pro-
gram writes them whenever they change so that no information will be lost if the program is
interrupted or aborts.

Note that the file is opened in binary mode because we are writing binary data. On some
systems, forgetting this will cause end-of-line processing to be done, damaging the file. For
example, the quantity twelve is indistinguishable from a newline character; if this were in fact
written as a carriage-return/newline pair, the resulting record would be longer than it ought to
and would overwrite the beginning of the next part.

/*

** Decl arations and prototypes for 1/0O functions.

*/

/*

** Open the inventory file. Takes the filename as the only argunent and
** returns a bool ean: TRUE if successful, else FALSE.
*/

i nt open_file(char const *filenane);

/*

** Close the inventory file.

*/

voi d close file(void);

/*

*x Return the nunber of the last part on file.

*/

Part _nunber |ast_part_nunber(void);

/*

*x Return the next avail able part numnber.

*/

Part nunber next part _nunber(void);

Solution 15.11e continued . . .

114 Chapter 15 Input/Output Functions

/*
** Read an inventory record. Takes the part nunber and a pointer to a Part
** structure as argunents. Returns TRUE if the part exists and FALSE
*x ot herw se.
*/
i nt read_part(Part_nunber part_ nunmber, Part *part);
/*
*x Wite an inventory record. Takes the part nunber and a pointer to a
** Part structure as argunents.
*/
voi d wite part(Part_nunber part nunber, Part const *part);
Solution 15.11e io.h
/*
** Functions to access the inventory file.
*/

#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
#i ncl ude <stdlib. h>
#i ncl ude "part.h"

#i ncl ude "io. h"

/*

*x Stream used for the inventory file. The part_nunber array contains the
*x | argest part nunber used and the nunber of the first deleted part. The
*x latter nakes it nore efficient to add new parts by avoiding the need to
** scan the entire file to locate a previously deleted entry. These are
*x all static because all the functions that need it are in this nodul e

*/

static FILE *inv_file;

static Part_nunber part _nunber[2];

static enum { LAST, NEXT };

/*

*x Wite the last and next part nunbers to the file.

*/

static void
wite part_nunbers(void)

{
fseek(inv_file, 0, SEEK SET);
fwite(part_nunber, sizeof(Part_nunber), 2, inv_file);
}
/*
*x Open the inventory file.
*/
i nt

open_file(char const *fil enane)

Solution 15.11f continued . . .

Pointers on C—Instructor’s Guide 115

try to

{
/*
** Try opening the file.
*/
inv_file = fopen(filenane, "r+b");
if(inv_file == NULL){
/*
** |t failed. |If it was because the file did not exist,
** create it.
*/
i f(errno == ENOENT) {
inv_file = fopen(filename, "wt+b");
if(inv_file!=0){
part _nunber[LAST] = O;
part _nunmber[NEXT] = 1;
wite part _nunbers();
}
}
/*
** | f we could not open (or create) the file, print a nmessage.
*/
if(inv_file == NULL)
perror(filenane);
}
el se
/*
** File opened ok — read the part nunber data.
*/
fread(part_nunber, sizeof(Part_nunber), 2, inv_file);
/*
** Return the status of whether we were able to open the file.
*/
return inv_file !'= NULL
}
/*
*x Close the inventory file.
*/
voi d
close file(void)
{
fclose(inv_file);
}
/*
** Return the nunber of the last part on file.
*/
Part nunber
| ast _part_nunber(void)
{

Solution 15.11f

continued . . .

116 Chapter 15 Input/Output Functions

return part_ nunber[LAST];

}
/*
** Return the next part nunber to use.
*/
Part nunber
next part_nunber(void)
{
Par t part;
/*
** |f the "next" part nunber is in the range of existing parts, start
** reading the file fromthat point to find the first deleted part.
** Otherwise (or if no deleted parts are found), return the part nunber
** jmredi ately after the |ast one used up till now.
*/
whil e(part_nunber[NEXT] <= part_nunber[LAST]){
if(!'read_part(part_nunber[NEXT], &part))
br eak;
part _nunber[NEXT] +=1
}
wite part_nunbers();
return part_nunmber[NEXT];
}
/*
** Read a part fromthe inventory file.
*/
i nt
read_part(Part_nunber p, Part *part)
{
/*
** |f the part nunmber is legal, try to read the file. Then verify that
** the part was not del eted by checking for a nonenpty description
*/
if(p>0 &% p <= part_nunber[LAST]){
fseek(inv_file, p * sizeof(Part), SEEK SET);
if(fread(part, sizeof(Part), 1, inv file) !=1){
perror("Cannot read part");
exit(EXIT_FAI LURE);
}
return *part—>description !="\0";
}
return FALSE;
}
/*
** Wite a part to the inventory file. Update the "last part nunber" if
** this part is after the old "last" part.
*/

Solution 15.11f continued . . .

Pointers on C—Instructor’s Guide 117

wite part(Part_nunber p, Part const *part)

Make sure the part nunber is legal (a brand new part may have the
next nunber past "part_nunmber[LAST]").

if(p>0 &% p <= part_nunber[LAST] + 1){

voi d

{
/*
“f
}

}

Solution 15.11f

fseek(inv_file, p * sizeof(Part), SEEK SET);

if(fwite(part, sizeof(Part), 1, inv_file) =1){
perror("Cannot wite part");
exit(EXI T_FAILURE);

}

/*
** Update the part nunber status. |If the part nunber is |arger
** than part _nunber|[LAST], we just created a new part.
*/
if(p > part_number[LAST]){
part _nunmber[LAST | = p;
wite part_nunbers();

}

/*

** | f the description is enpty, this part is being del eted.

*/

i f(part—>descriptionf] 0] =="'\0" && p < part_nunber[NEXT]){
part _nunber[NEXT] = p;
wite part _nunbers();

io.c

16

Standard Library

16.1 Questions

2.
4,

Yes, al that is needed are numbers that have no apparent relationship to one another.

It is not easy to be absolutely sure. Some implementations provide a sl eep function that
suspends a program for a period of time; if the value of cl ock continues to increase during a
sleep, then it is measuring elapsed time. Lacking that, try reading from the standard input but
not entering anything for ten seconds. If cl ock continues to increase during that time, it is
either measuring elapsed time or the operating system on your machine isn't very good at
managing its I/O devices. Another aternative is to start another program; if cl ock in the first
program increases while the second one is running, it is measuring elapsed time.

The major problem is that | ongj np is called after the function that called set j np has returned.
This means that the state information saved in the jump buffer is no longer valid, so the result is
unpredictable. Compared to this, the fact that the main function does not check whether the right
number of command line argument were given is minor. What happens when this executes? It
depends on the particular machine. Some will abort on an illegal return address from the no-
longer-active set _buf f er function. Others will go off into an infinite loop somewhere. Still
others, particularly RISC machines which do not store function arguments on the stack along
with the return address, will go into an infinite loop.

The results, of course, will depend on the specific implementation. A Sun Sparc Il running Sun
OS 4.1.4 raise a S| GFPE signal for integer division by zero but not for floating-point division by
zero. Borland C++ version 4.0 on an Intel Pentium processor raises the SI GFPE signal for a
floating-point division by zero, but not for integer division by zero.

Different implementations behave differently due in large measure to how (or whether) the
CPU detects such errors. This behavior cannot be standardized without the cooperation of the
CPU manufacturers. The moral of the story is that signal handling is inherently non-portable,
despite the best efforts of the Standard.

Yes, it would cause the array to be sorted into descending order.

119

120

Chapter 16 Standard Library

16.2 Programming Exercises

/*

1. This program makes use of the di v function to obtain both the quotient and remainder from an
integer division. On machines without hardware instructions to do integer division, this will be
considerably faster than doing a/ and a % operation.

** For a given input age, conpute the smallest radix in the range 2 — 36 for
** which the age appears as a nunber |ess than or equal to 29.

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt

mai n(int ac, char **av)

{

Solution 16.1 continued . . .

i nt age;
i nt radi x;
div_t resul t;

if(ac 1= 2){
fputs("Usage: age radix your-age\n", stderr);
exit(EXIT_FAI LURE);

}

/*

** Get the age argunent.
*/

age = atoi(av[1]);

/*
** Find the snmall est radi x that does the job.
*/
for(radix = 2; radix <= 36; radix += 1){
result = div(age, radix);
if(result.quot <= 2 & result.rem<= 9)

br eak;
}
/*
** Print the results.
* [

if(radix <= 36){
printf("Use radix %d when telling your age;
"%l in base %l is %%\ n"
radi x, age, radix, result.quot, result.rem);
return EXI T_SUCCESS;
}

el se {

printf("Sorry, even in base 36 your age
"is greater than 29!\ n");

Pointers on C—Instructor’s Guide 121

return EXI T_FAI LURE;

}

}

Solution 16.1 age.c
3. The biggest problem with this is the rounding required to show which number the hour hand is
actually closer to.

/*

** Gve the current tine as a young child woul d.

*/

#i ncl ude <tine. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

i nt
mai n()
{ _
tinme_t now
struct tm *tm
i nt hour ;
i nt m nut e;

/*

** Get current hour and m nute.
*/

now = tinme(NULL);

tm= localtime(&ow);

hour = t m->t m hour;

mnute = tm->tmmn;

/*

** Round and normalize the hour, convert the mnute, and then print them

*/

if(mnute >= 30)
hour += 1,

hour % 12;

if(hour == 0)
hour = 12;

m nute += 2;

mnute /= 5;

if(mnute == 0)
mnute = 12;

printf("The big hand is on the %, and the little hand is on the %.\n",
m nute, hour);

return EXIT_SUCCESS;
}

Solution 16.3 clock.c

122

/*

Chapter 16 Standard Library

4. The month and year must be adjusted to the proper range, and a time other than midnight should
be chosen to avoid ambiguity. Other than that, the program is straightforward. On a Silicon
Graphics Indy, the range of valid dates handled by this program is December 14, 1901 through
January 18, 2038. This suggests that the reason t i me_t is defined as a signed quantity is so
that it can represent 68 years before 1970 as well as 68 years after 1970.

** Read a nonth, day, and year fromthe conmand |ine and deternine the day of
** the week for that date.

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

char *month[] = { "January", "February", "March", "April", "My", "June"
"July", "August", "Septenber", "Cctober", "Novenber", "Decenber"
b
char *day[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"
¥
i nt
mai n(int ac, char **av)
{
struct tm tm
if(ac 1= 4){
fputs("Usage: day_of _seek nonth day year\n", stderr);
exit(EXIT_FAILURE);
}
/*
** Store the argunments in the struct tmvari abl e.
*/
tmtmsec = 0;
tmtmmn = 0;
tmtm hour = 12;
tmtmnday = atoi (av[2]);
tmtmnon = atoi (av[1]) - 1;
tmtmyear = atoi(av[3]) — 1900
tmtm.isdst = 0;
/*
** Normalize it, then print the answer.
*/
nktime(& m);
printf("% %, % is a %\n", nonth[tmtmnpon], tmtm nday
tmtmyear + 1900, day[tmtmwday]);
return EXI T_SUCCESS;
}
Solution 16.4

weekday.c

Pointers on C—Instructor’s Guide 123

5. The most common mistake in this program is to use the temperature directly rather than At.

/ *
** Conmpute wind chill given the tenperature in degrees Cel sius and wi nd vel ocity
** in neters per second.
*/
#i ncl ude <math. h>
#def i ne A 10. 45
#define B 10. 00
#define C -1.0
#defi ne X 1. 78816
doubl e
wi nd_chill(double tenp, double velocity)
{
tenp = 33 — tenp;
return 33 — ((A+ B * sqrt(velocity) + C* velocity) * tenp) /
(A+B*sgrt(X) + C* X);
}
Solution 16.5 windchil.c
6. There are several common errors. passing the number of payments argument as an integer to
pow; failing to convert the years and interest to their monthly equivalents; failing to convert the
interest to a decimal; and failing to round to the nearest penny.
/ *
** Conmpute the nonthly nortgage paynent given the |oan anpbunt, annual interest
** rate, and |oan term
*/
#i ncl ude <math. h>
doubl e
payment (doubl e anpbunt, double interest, int periods)
{
interest /= 1200;
peri ods *= 12;
amount = anmount * interest /
(1 -powm 1 + interest, (double)(—periods)));
return floor(anmbunt * 100 + 0.5) / 100;
}
Solution 16.6 mortgage.c
8. sscanf will no longer work, as there may be any number of ages. Instead, we will use
strtol.
/ *

** Conmpute the average age of fam |y nenbers. Each line of input is for one
** famly; it contains the ages of all fam |y nenbers.

Solution 16.8 continued . . .

124 Chapter 16 Standard Library

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt
mai n()

{

}

Solution 16.8

/*

buffer[512];

** Get the input one line at a tine.

whil e(fgets(buffer, 512, stdin) != NULL){

char *bp;

i nt nmenber s;

| ong sum

| ong age;

/*

** Decode the ages, one by one.
*/

sum = O;

menbers = O;

bp = buffer;

while((age = strtol(bp, &p, 10)) > 0){
menbers += 1;
sum += age;

}

i f(menbers == 0)
conti nue;

/*
** Conpute the average and print the results.
*/

printf("%.2f: %", (double)sum/ nenbers, buffer);

ages.c

9. The answers are surprising: In a group of 30 people, the odds are around 70% that at least two
of them share a birthday. It only takes a group of around 23 to get even odds. This program,
on the other hand, is unremarkable.

** Determ ne the odds of two people in a class of 30 having the sane birthday.

*/

#i ncl ude <stdi o. h>

Solution 16.9

continued . . .

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#defi ne
#def i ne

#def i ne
i nt

mai n(in

{

Solution 16

125

Pointers on C—Instructor’s Guide
<stdlib. h>
<mal | oc. h>
<assert. h>
<tine. h>
TRUE 1
FALSE O
TRI ALS 10000
t ac, char **av)
i nt n_students = 30;
i nt *bi rt hdays;
i nt test;
i nt mat ch;
i nt total _matches = O;
/ *
** See how many students in the class (default 30).
*/
if(ac > 1){
n_students = atoi(av[1]);
assert(n_students > 0);
}
/ *
** Seed the random nunber generator.
*/
srand((unsigned int)time(0));
/ *
** Allocate an array for the students’ birthdays.
*/
birthdays = (int *)malloc(n_students * sizeof(int));
assert(birthdays !'= NULL);
/ *
** Run the tests a bunch of tines!
*/
for(test = 0; test < TRIALS;, test += 1){
i nt i;
/ *
** Cenerate the birthdays and check for matches.
*/
mat ch = FALSE
for(i =0; i < n_students & !'match; i += 1){
i nt i
/ *
9 continued . . .

126 Chapter 16 Standard Library

** Generate the next birthday.
*/
birthdays[i] = rand() % 365;

/*
** See if it matches any of the existing
** ones; quit as soon as we find a match
*/
for(j =0; !'match & j <i; j += 1)
if(birthdays[i] == birthdays[|j])
mat ch = TRUE

}

/*

** Count the results.
*/

if(match)

total _matches += 1;

}

printf("The odds of any two people in a group of %\ n"
"havi ng the sane birthday are %g\n", n_students,
(doubl e)total matches / TRIALS);

free(birthdays);

}
Solution 16.9 birthday.c
10. The only difference between this program and the algorithm described is that the sorted part of
the array begins with one element in it.
/ *
** Do an insertion sort to order the elenents in an array.
o

#i ncl ude <stdi o. h>
#i ncl ude <assert. h>
#i ncl ude <mal |l oc. h>

voi d
insertion_sort(void *base, size t n_elenents, size t el_size,
int (*conmpare)(void const *x, void const *y))

{
char *array;
char *t enp;
i nt i;
i nt next el enent;
/*

** Copy base address into a char * so we can do pointer arithnetic.
** Then get a tenporary array |large enough to hold a single el enent.

Solution 16.10 continued . . .

Pointers on C—Instructor’s Guide 127

*/

array = base;

temp = mal l oc(el _size);
assert(tenp != NULL);

/*
** The first elenment in the array is already sorted. Insert the
** remai ni ng ones one by one.
*/
for(next_elenment = 1; next_elenment < n_elenments; next_element += 1){
char *i _ptr = array;
char *next _ptr = array + next_elenment * el _size
/*
** Find the right place to insert the next el enent.
*/
for(i =0; i < next elenent; i += 1, i _ptr += el _size)
i f(conpare(next _ptr, i _ptr) <0)
br eak;
/*
** | f we went all the way to the end of the sorted part of the
** array, then the next el enent should go after those that are
** already sorted. That’s where it is right now, so we’'re done.
*/
if(i == next_el enent)
conti nue;
/*
** Otherwi se, we nust insert the next el ement before the one
** that i points to. First, copy the next elenment into the
** tenmporary array.
*/
mencpy(tenp, next _ptr, el_size);
/*
** Now copy the elenents fromi to the end of the sorted part of
** the array to the right one place.
*/
memove(i _ptr + el _size, i _ptr, (next_element — i) * el _size);
/*
** Fipally, the next elenment is inserted.
*/
mencpy(i _ptr, tenp, el_size);
}
free(tenp);

}

Solution 16.10 ins_sort.c

17

Classic Abstract Data Types

17.1 Questions

1.

A stack, because the values popped off of a stack come off in the opposite order from which
they were pushed.

A queue is best because it keeps the oldest stock at the front so that it will be purchased before
it goes bad. A stack would put the new stock at the front, and the cartons in the back might lan-
guish until the milk turned solid.

No, because the client can easily do this already:
while('is empty())
pop() ;

The only advantage to be gained by having a function in the stack module to empty the stack is
that it could do the job more efficiently; for example,

voi d
enpty(void)
{
top_elenent = -1;
}
t op_el ement would have to be initialized to zero so that the first value pushed would be stored
in the array. Then t op would have to be changed appropriately:

return stack[top_element — 1];

With these changes, the module would work correctly, albeit dightly less efficiently.

Clients would be able to push too many values, overflowing the array. They could pop more
values than the stack actually held, which would cause subsequent callsto t op to access memory
outside of the array.

No. If the function were written like this:

assert(!is_ empty());
free(stack);

129

130

Chapter 17 Classic Abstract Data Types

10.

11.

13.

14.
15.

stack = stack—>next;

the last statement would be incorrect, as it accesses dynamically allocated memory that has
aready been freed.

They will both work, though the logic for using a separate counter is simpler. Leaving one array

element unused wastes that space; if the elements are large this could be considerable.

This is tricky, as there are four cases to consider: the queue may be empty or nonempty, and
front may be before or after rear. The modulo operation gives the correct answer when the
gueue is empty.

if(front <= rear)

n_values = rear — front + 1;
el se

n_val ues = queue_size — front + rear + 1;
n_val ues % QUEUE_SI ZE;

Here is the tree:

/? / \
/ Ve
@\/ \

%

It is the same as a sequential search of a linked list, because that is what the tree actudly is.

Pre-order: 54 36 22 16 25 41 40 51 72 61 80 73.
In-order: 16 22 25 36 40 41 51 54 61 72 73 80.
Post-order: 16 25 22 40 51 41 36 61 73 80 72 54.
Breadth-first: 54 36 72 22 41 61 80 16 25 40 51 73.

Pointers on C—Instructor’s Guide 131

16. if(current < ARRAY_SI ZE && tree[current] !'=0){
do_pre_order_traverse(
left _child(current), callback);
cal | back(tree[current]);
do_pre_order_traverse(
right_child(current), callback);

}
17. if(current < ARRAY_SI ZE && tree[current] !'=0){
do_pre_order_traverse(
left_child(current), callback);
do_pre_order_traverse(
right _child(current), callback);
cal | back(tree[current]);
}

19. A post-order traversal is the most convenient because it processes (deletes) the children of a node
before deleting the node itself.

17.2 Programming Exercises

/*

1. Thisfunction must allocate space for the new stack and copy the values from the old stack to the
new. It must then free the old array. An assertion is used to ensure that the new array is large
enough to hold al the data currently on the stack.

** Resize the array holding the stack

*/
voi d

resi ze_stack(size_t new size)

{

STACK _TYPE *ol d_st ack
i nt i;

/*

** Make sure the new size is |arge enough to hold the data al ready on
** the stack. Then save the pointer to the old array and create a new
** one of the right size.

*/

assert(new size > top_el enent);

ol d_stack = stack;

stack = (STACK TYPE *)nmal | oc(new size * sizeof(STACK TYPE));
assert(stack !'= NULL);

stack_size = new_si ze;

/*

** Copy values fromthe old array to the new one and then free the old
** menory.

*/

for(i =0, i <=top elenent; i += 1)

Solution 17.1 continued . . .

132 Chapter 17 Classic Abstract Data Types

stack[i] = old _stack[i];
free(old stack);

}
Solution 17.1 resize.c
2. This module is converted the same as the stack module was. The resize function is much more
interesting: Not every location in the array need be copied, and it is easy for front and rear to
become incorrect when the data has wrapped around the end of the array.
/ *

** A queue inplenented with a dynamically allocated array. The array size is
** given when create is called, which nust happen before any other queue

** operations are attenpted.

*/

#i ncl ude "queue. h"

#i ncl ude <stdi o. h>

#i ncl ude <assert. h>

/*
*x The array that holds the values on the queue, its size, and pointers to
*x the front and rear of the queue.
*/
static QUEUE TYPE *queue;
static size_t gueue_si ze;
static size_t front = 1
static size_t rear = 0;
/*
*x Creat e_queue
*/
voi d
create_queue(size_ t size)
{
assert(queue_size == 0);
gueue_si ze = size;
queue = (QUEUE TYPE *)nmal | oc(queue_size * sizeof (QUEUE TYPE));
assert(queue != NULL);
}
/*
** destroy_queue
*/
voi d
destroy_queue(void)
{
assert(queue_size > 0);
gqueue_si ze = 0;
free(queue);
queue = NULL;
}

Solution 17.2 continued . . .

/*
*/
voi d

Pointers on C—Instructor’s Guide

resi ze_queue

resi ze _queue(size_ t new size)

{

}
/*

* *

*/

voi d

i nsert (

{

Solution 17.2

QUEUE_TYPE *ol d_queue;

i nt i

i nt rear_plus_one;
/*

** Make sure the new size is |arge enough to hold the data al ready on
** the queue. Then save the pointer to the old array and create a new
** one of the right size.
*/
if(front <= rear)
i =rear — front + 1;
el se
i = queue_size — front + rear + 1
i 9% queue_size;
assert(new size >=i);
ol d_queue = queue;
gqueue = (QUEUE TYPE *)mal | oc(new size * sizeof (QUEUE TYPE));
assert(queue != NULL);
gueue_si ze = new_Si ze;

/*

** Copy values fromthe old array to the new one and then free the old

** menory.

*/

i = 0;

rear_plus _one = (rear + 1) % queue_si ze;

while(front != rear_plus_one){
queue[i] = old_queue[front];
front = (front + 1) % queue_si ze;
i += 1;

}

front = 0O;

rear = (i + queue_size — 1) % queue_si ze;

free(ol d_queue);

i nsert

QUEUE_TYPE val ue)

assert(lis full());
rear = (rear + 1) % queue_si ze
queue[rear] = val ue;

133

continued . . .

134 Chapter 17 Classic Abstract Data Types

}

/*

@8 del ete

*/

voi d

delete(void)

{
assert(!'is_enmpty());
front = (front + 1) % queue_si ze;

}

/*

@0 first

*/

QUEUE_TYPE first(void)

{
assert(lis_ empty());
return queue[front];

}

/*

@ i s_enpty

*/

i nt

is_enpty(void)
{

assert(queue_size > 0);

return (rear + 1) % queue_size == front;

}

/ *

** is_full

*/

i nt

is_full(void)

{
assert(queue_size > 0);
return (rear + 2) % queue_size == front;

}

Solution 17.2 d_queue.c
4. Thisis straightforward; the stack data is simply declared as arrays, and the stack humber passed
as an argument selects which element to manipulate.

/ *

** |nterface for a nodul e that manages 10 st acks.

*/

#i ncl ude <stdlib. h>
#defi ne STACK TYPE i nt /* Type of value on the stack */

Solution 17.4a continued . . .

Pointers on C—Instructor’s Guide 135

/*
** push
** Pushes a new val ue on the stack. The first argunment sel ects which
* stack, and the second argunent is the value to push.
*/
voi d push(size_ t stack, STACK TYPE val ue);
/*
* % pop
** Pops a value off of the selected stack, discarding it.
*/
voi d pop(size t stack);
/*
* % tOp
** Returns the topnost value on the sel ected stack w thout changing the
*x st ack.
*/
STACK TYPE top(size t stack);
/*
** is_enpty
** Returns TRUE if the selected stack is enpty, else FALSE
*/
i nt is_empty(size t stack);
/*
** js_ful
* Returns TRUE if the selected stack is full, else FALSE
*/
i nt is full(size t stack);
Solution 17.4a 10stack.h
/*

** A stack inplenented with a dynamically allocated array. The array size is
** given when create is called, which nust happen before any other stack

** operations are attenpted.

*/

#i ncl ude "10st ack. h"

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <mal | oc. h>

#i ncl ude <assert. h>

/*

** The maxi mum nunber of stacks handl ed by the nodule. This can be changed
** only by reconpiling the nodul e

*/

#def i ne N_STACKS 10

Solution 17.4b continued . . .

136 Chapter 17 Classic Abstract Data Types

/*
** This structure holds all the information for one stack: the array that
** hol ds the values, its size, and a pointer to the topnost val ue.
*
/
typedef struct {
STACK TYPE *st ack;
size_t si ze;
i nt top_el enment ;
} St ackl nf o;
/*
** Here are the actual stacks.
*
/
St ackl nfo stacks[N_STACKS];
/*
** create_stack
*/
voi d
create_stack(size_ t stack, size t size)
{
assert(stack < N _STACKS);
assert(stacks[stack].size == 0);
stacks[stack].size = size;
stacks[stack].stack =
(STACK TYPE *)mal | oc(size * sizeof(STACK TYPE));
assert(stacks[stack].stack !'= NULL);
stacks[stack].top_elenment = -1;
}
/*
** destroy_stack
*/
voi d
destroy_stack(size t stack)
{
assert(stack < N _STACKS);
assert(stacks[stack].size > 0);
stacks[stack].size = 0;
free(stacks[stack].stack);
stacks[stack].stack = NULL;
}
/*
*x push
*/
voi d
push(size_t stack, STACK TYPE val ue)
{

assert(!'is full(stack));
stacks[stack].top_el enment += 1;
stacks[stack].stack[stacks[stack].top_elenment] = val ue;

Solution 17.4b continued . . .

Pointers on C—Instructor’s Guide 137

}

/*

* % pop

*/

voi d

pop(size_ t stack)

{
assert(!is_enpty(stack));
stacks[stack].top_element —= 1;

}

/*

* % top

*/

STACK TYPE top(size t stack)

{
assert(!'is_enmpty(stack));
return stacks[stack].stack[stacks[stack].top_elenent];

}

/*

*x is_enpty

*/

i nt

is_empty(size t stack)

assert(stack < N _STACKS);
assert(stacks[stack].size > 0);
return stacks[stack].top_element == -1;

}

/*

** is full

*/

i nt

is full(size t stack)

{
assert(stack < N _STACKS);
assert(stacks[stack].size > 0);
return stacks[stack].top_element == stacks[stack].size — 1;

}

Solution 17.4b d_10stak.c
5. Because two subtrees might have to be traversed, a recursive function is appropriate. This func-
tion is for the linked implementation.

/*

** Count the nunber of nodes in a |linked binary search tree.

*/

Solution 17.5 continued . . .

138 Chapter 17 Classic Abstract Data Types

/ *
** Thi s hel per function takes the root of the tree we’'re currently worki ng
*x on as an argunent.
*/
i nt
count _nodes(TreeNode *tree)
{
if(tree == NULL)
return O;
return 1 + count_nodes(tree—>left) + count_nodes(tree—>right);
}
i nt
nunber _of nodes()
{
return count nodes(tree);
}
Solution 17.5 count.c
7. Each node's value must be checked to see that it is not too large or too small. One way of
doing this is to pass the minimum and maximum allowable values to each recursive cal of the
function. The problem with this is initialization for the first call: the solution shown uses the
maximum and minimum integer constants to solve the problem. It may not be this easy with
other data types. This function is written for the linked implementation.
/ *
** Check a |inked binary search tree for validity.
*/
/ *
** Thi s hel per function checks the validity of one node, using m ni rum and
** maxi mum val ues passed in fromthe call er
*/
i nt
check _bst subtree(TreeNode *node, int min, int nax)
{
/ *
** Enpty trees are al ways valid.
*/

i f(node == NULL)
return TRUE;

/*

** Check the validity of this node.

*/

i f(node—>value < min || node—>val ue > nax)
return FALSE;

/*

Solution 17.7 continued . . .

Pointers on C—Instructor’s Guide 139

** Check the validity of the subtrees.
*/
i f(!'check _bst subtree(node—>left, mn, node—>value — 1) ||
I check _bst subtree(node—>right, node—>value + 1, nax))
return FALSE

return TRUE

}
/ *
** Check the validity of a binary search tree
*/
i nt
check _bst tree()
{
return check bst subtree(tree, INT_MN, |NT_MAX);
}
Solution 17.7 chk_bst.c
8. Thisis difficult, but recursion helps considerably.
/ *
** Delete a node froman arrayed binary search tree
*/
voi d
del et e(TREE_TYPE val ue)
{
i nt current;
i nt left;
i nt right;
i nt | eft _subtree enpty;
i nt ri ght subtree_enpty;
/ *
** First, locate the value. It nust exist in the tree or this routine
** will abort the program
*/
current = 1;
while(tree[current] !'= value){
if(value < tree[current])
current = left_child(current);
el se

current = right _child(current);
assert(current < ARRAY SIZE);

assert(tree[current] '=0);
}
/*
** We’ve found the value. |If it is a leaf, sinply set it to zero.

** Otherwise, if its left subtree is not enpty, replace the node’s val ue

Solution 17.8 continued . . .

140 Chapter 17 Classic Abstract Data Types

** with the rightnost (largest) child fromits |eft subtree

and t hen

** delete that node. Ot herw se, replace the value with the | eftnost
** (smallest) child fromits right subtree, and del ete that node

*/

left = left _child(current);

right = right_child(current);

left subtree enpty = left > ARRAY SIZE || tree[left] == 0;

right _subtree enpty = right > ARRAY SIZE || tree[right] == 0;

if(left_subtree _enpty && right subtree enpty)

/*
** The val ue has no children; sinply set it to zero.
*/
tree[current] = 0;
el se {
i nt this_child;
i nt next chil d;
if(!'left _subtree enpty){
/*
** The left subtree is nonenpty. Find its rightnost
** chil d.
*/
this_child = left;
next child = right _child(this_child);
whi | e(next _child < ARRAY_SI ZE
&% tree[next _child] !'=0){
this_child = next_child;
next _child = right_child(this_child);
}
}
el se {
/*
** The right subtree is nonenpty. Find its |eftnost
** chil d.
*/
this child = right;
next child = left _child(this child);
whi | e(next_child < ARRAY_S| ZE
&% tree[next _child] !'= 0){
this_child = next_child;
next child = left _child(this child);
}
}
/*
** Delete the child and replace the current value with
** this child s val ue.
*/
value = tree[this child];
Solution 17.8

continued . . .

Pointers on C—Instructor’s Guide 141

del et e(val ue);
tree[current] = val ue;

}
}
Solution 17.8 a_t _del.c
9. Thisis best done with a post-order traversal. Unfortunately, the interface for the traversal func-
tions passes a pointer to the node's value rather than a pointer to the node containing the value,
so we must write our own.
/*
** Destroy a linked binary search tree.
*/
/*
** Do one | evel of a post—order traverse to destroy the tree. This hel per
** function is needed to save the informati on of which node we're currently
** processing; this is not a part of the client’s interface.
*/

static void
do_destroy_tree(TreeNode *current)

{
if(current '= NULL){
do_destroy tree(current—>left);
do_destroy tree(current—>right);
free(current);
}
}
/*
** Destroy the entire tree.
*/
voi d
destroy_tree()
{
do_destroy tree(tree);
}
Solution 17.9 |t dstr.c
10. Thisis dslightly easier than the arrayed tree deletion because we can rearrange values merely by
changing pointers; the values do not need to be moved in the array.
/*
** Delete a node froma |inked binary search tree
*/
voi d
del et e(TREE_TYPE val ue)
{

Tr eeNode *current;

Solution 17.10 continued . . .

142 Chapter 17 Classic Abstract Data Types

Tr eeNode **| i nk;

/*

** First, locate the value. It nust exist in the tree or this routine
** will abort the program

* [

link = &ree;

while((current = *link) != NULL & value != current—>val ue){

i f(value < current—>val ue)
link = &urrent—>left;

el se
link = ¤t—>right;
}
assert(current != NULL);
/*
** We've found the value. See how many children it has.
*/
if(current—>left == NULL && current—>right == NULL){
/*
** |t is aleaf; no children to worry about!
*/
*link = NULL;
free(current);
else if(current—>left == NULL || current—>right == NULL){
/*
** The node has only one child, so the parent will sinply
** jnherit it.
*/
if(current—>left !'= NULL)
*link = current—>l eft;
el se
*link = current—>right;
free(current);
}
el se {

/*

** The node has two children! Replace its value with the
** |Jargest value fromits left subtree, and then del ete that
** node i nstead.

*/
Tr eeNode *this_child;
Tr eeNode *next chil d;

this child = current—>l eft;
next _child = this_child->right;
whil e(next _child !'= NULL){
this child = next_chil d;
next child = this_child->right;

Solution 17.10 continued . . .

Pointers on C—Instructor’s Guide 143

/*

** Delete the child and replace the current value with
** this child s val ue.

*/

val ue = this_chil d->val ue;

del et e(val ue);

current —>val ue = val ue;

}
}
Solution 17.10 | t del.c
/ *

** GENERI C i npl enentation of a stack with a static array. The array size is
** given as one of the arguments when the stack is instantiated.

*/

#i ncl ude <assert. h>

/*
** | nterface
*x This macro declares the prototypes and data types needed for a stack of
** one specific type. It should be invoked ONCE (per source file) for each
** di fferent stack type used in that source file. The suffix is appended
** to each of the function nanes; it nust be chosen by the user so as to
* gi ve uni que nanes for each different type used.
*/
#defi ne GENERI C_STACK | NTERFACE(STACK TYPE, SUFFI X) \
typedef struct { \
STACK_TYPE *st ack; \
i nt top_el enent ; \
i nt st ack_si ze; \
} STACK##SUFFI X; \
voi d push##SUFFI X(STACK##SUFFI X *st ack, STACK TYPE val ue);\
voi d pop##SUFFI X(STACK##SUFFI X *stack); \
STACK TYPE t op##SUFFI X(STACK##SUFFI X *stack) ; \
int is_enpty##SUFFI X(STACK##SUFFI X *stack); \
int is_full##SUFFI X(STACK##SUFFI X *stack);
/*
** | npl ement ati on
* %
** This macro defines the functions to mani pul ate a stack of a specific
*x type. It should be invoked ONCE (per entire program for each different
*x stack type used in the program The suffix nust be the sane one used in
** the interface declaration.
*/
#def i ne GENERI C_STACK | MPLEMENTATI ON(STACK TYPE, SUFFI X) \
\
voi d \
push##SUFFI X(STACK##SUFFI X *stack, STACK TYPE value) \

Solution 17.11 continued . . .

144 Chapter 17 Classic Abstract Data Types

{ \
assert(!is_full ##SUFFI X(stack)); \
stack—>t op_el enent += 1; \
stack—>stack[stack—>top_elenment] = val ue; \
} \
\
voi d \
pop##SUFFI X(STACK##SUFFI X *st ack) \
{ \
assert(!is_enpty##SUFFI X(stack)); \
stack—>t op_el enent —= 1; \
} \
\
STACK_TYPE t op##SUFFI X(STACK##SUFFI X *st ack) \
{ \
assert(!is_enpty##SUFFI X(stack)); \
return stack—>stack[stack—>top_el ement]; \
} \
\
i nt \
i s_enpt y##SUFFI X(STACK##SUFFI X *st ack) \
{ \
return stack-—>top_el ement == -1; \
} \
\
i nt \
i s_full #SUFFI X(STACK##SUFFI X *st ack) \
{ \
return stack—>top_el ement == stack—>stack size — 1; \
}
/*
** Stacks
* %
** This macro creates the data needed for a single stack. It is invoked
** once per stack. NAME is the name by which you refer to the stack in
* % subsequent function calls, and STACK SIZE is the size you want the stack
** to be. STACK TYPE is the type of data stored on the stack, and the
** SUFFI X nust be the sane one given in the interface declaration for this
*x STACK_TYPE.
*/
#defi ne GENERI C_STACK(NAME, STACK SIZE, STACK TYPE, SUFFIX) \
static STACK TYPE NAVE##st ack[STACK S| ZE]; \

STACK##SUFFI X NAME = { NAME##stack, -1, STACK Sl ZE };

Solution 17.11 g_stack2.h

18

Runtime Environment

18.1 Questions

1. The answer depends on the specific environment. RISC architectures often have interesting stra-
tegies for handling parameter passing, though the semantics of C do not aways allow the com-
piler writer to take advantage of all of them.

The answer depends on the specific environment.
The answer depends on the specific environment.
The answer depends on the specific environment.

N kA DN

Assembly language programs can be more efficient in C programs only in their size and speed.
What is far more important is that the programmer is much more efficient using a high level
language than using an assembly language. The assembly language programmer is unlikely to
ever complete a piece of software of the scale common today, so the fact that the code is small
and fast is irrelevant.

18.2 Programming Exercises
1. The answer depends on the specific environment.
2. The answer depends on the specific environment.

145

