
Implementation of a Speed Field
Orientated Control of Three Phase AC

Induction Motor using TMS320F240

Literature Number: BPRA076
Texas Instruments Europe

March 1998

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1998, Texas Instruments Incorporated

Contents

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 iii

Contents

1. Introduction ..1

2. The Field Orientated Controlled AC Induction Drive ..2
2.1 The AC induction motor...2
2.2 The control hardware ..3
2.3 The Power Electronics Hardware..3
2.4 Complete Field Orientated Speed Control Structure Presentation................4

3. Field Orientated Speed Controlled AC Induction Drive Software Implementation ...6
3.1 Software Organization...6

3.1.1 DSP Controller Setup...7
3.1.2 Software Variables...7

3.2 Base values and PU model ...8
3.3 Magnetizing current considerations...9
3.4 Numerical considerations ..10

3.4.1 The numeric format determination ...10
3.5 Current Sensing and Scaling...12
3.6 Speed Sensing and Scaling ..15
3.7 The PI regulator ..17
3.8 Clarke and Park transformation...18

3.8.1 The (a,b)->(α,β) projection (Clarke transformation)19
3.8.2 The (α,β)->(d,q) projection (Park transformation)20

3.9 The current model ...21
3.9.1 Theoretical background ...21
3.9.2 Numerical consideration ..22
3.9.3 Code and experimental results ..23

3.10 Generation of sine and cosine values ...25
3.11 The Field Weakening ..26

3.11.1 Field Weakening Principles..26
3.11.2 Field Weakening Constraints ...27
3.11.3 TMS320F240 Field Weakening Implementation......................28

3.12 The Space Vector Modulation...31
3.13 Experimental Results ..34
3.14 The control algorithm flow chart ..37

4. User Interface...39

5. Conclusion ...39

References...40

Appendix A - TMS320F240 FOC Software ..41

Appendix B - Linker File ...64

Contents

iv Literature Number: BPRA076

Appendix C - Sine Look-up table ... 65

Appendix D - User Interface Software ... 69

Contents

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 v

List of Figures

Figure 1: Top View of the TMS320F240 Evaluation Module ...3

Figure 2: Complete AC Induction Drive Dedicated FOC Structure....................................5

Figure 3: General Software Flowchart ...6

Figure 4: FOC Software Initialization and Operating System ..7

Figure 5: Steady State Phase Electrical Model ...9

Figure 6: 4.12 Format Correspondence Diagram..10

Figure 7: 1) left shift & store high accumulator, 2) right shift & store low accumulator11

Figure 8: Current Sensing and Scaling Block Diagram ...12

Figure 9: Current Sensing Interface Block Diagram ..12

Figure 10: Sensed Current Values before Scaling ..13

Figure 11: 8.8 Numerical Format Correspondence Diagram...14

Figure 12: Speed feedback obtaining block scheme...15

Figure 13: Speed Feedback Computation Flowchart ..16

Figure 14: AC Induction Drive Phase Currents..19

Figure 15: Output of the Clarke Transformation Module ...20

Figure 16: Link between Rotor Flux Position and its Numerical Representation.............22

Figure 17: Input and output for the current model block..23

Figure 18: Rotor Flux Position, Flux and Torque Components..24

Figure 19: Sinθcm Calculation using the Sine Look-up Table ...25

Figure 20: Field weakening Real Operation ..26

Figure 21: Maximum and Nominal Torque vs Speed ..27

Figure 22: Field Weakening Voltage Constraints ..28

Figure 23: Field Weakening Block Diagram ..28

Figure 24: Matlab Interpolation Results and Numerical Implementation Result30

Figure 25: Experimental Torque & Power Charact. in the Extended Speed Range30

Figure 26: Table Assigning the Right Duty Cycle to the Right Motor Phase33

Figure 27: Sector 3 PWM Patterns and Duty Cycles...34

Figure 28: Steady State Operation under Nominal Conditions..35

Figure 29: Transient Operation under Nominal Torque / Torque Limitation set to 0.835

Figure 30: Transient Operation under Nominal Torque / Torque Limit. set to 1.236

Figure 31: Transient Operation in the Extend. Speed Range / Torque Limit. set to 136

Figure 32: Speed Reversion from -1000rpm to 1000rpm under nominal load.................37

Figure 33: FOC Implementation Flowchart..38

Figure 34: Communication Program. Screen picture...39

Introduction

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 1

Implementation of a Sensorless Speed Controlled Brushless
DC Drive using the TMS320F240

ABSTRACT

Since the integration of high computationnal DSP power with all
necessary motor control peripherals into a single chip, TMS320F240, it
has become possible to design and implement a highly efficient and
accurate AC induction drive control. The AC induction drive presented
here is based on document [6] and on a dedicated and exhaustive study
of this DSP solution. Both the theoretical and practical characteristics of
this drive implementation allow the reader to quickly gain an
understanding of the Field Orientated Control of an induction motor. As
such, the reader might not only gain a short time to market solution,
but also a speed adjustable, reliable and highly effective induction drive.

1. Introduction
For many years the asynchronous drive has been preferred for a variety of industrial
applications because of its robust nature and simplicity of control. Until a few years
ago, the asynchronous motor could either be plugged directly into the network or
controlled by means of the well-known scalar V/f method. When designing a variable
speed drive, both methods present serious drawbacks in terms of the drive efficiency,
the drive reliability and EMI troubles. With the first method, even simple speed
variation is impossible and its system integration highly dependent on the motor
design (starting torque vs maximum torque, torque vs inertia, number of pole pairs).
The second solution is able to provide a speed variation but does not handle real time
control as the implemented is valid only in steady stage. This leads to over-currents
and over-heating, which necessitate a drive which is then oversized and no longer
cost effective.

It is the real time-processing properties of silicon, such as the TMS320F240 DSP
controller, and the accurate asynchronous motor model that have resulted in the
development of a highly reliable drive with highly accurate and variable speed
controls. Application of The Field Orientated Control to the AC induction drive results
in the instant control of a high performance drive (short response time with neither the
motor nor the power component oversized). The ability to achieve such control
renders the asynchronous drive a highly advantageous system for both home
appliances and for industrial or automotive applications. Key advantages are the
robust nature of the drive, its reliability and efficiency, the cost effectiveness of both
the motor and the drive, the high torque at zero speed, the speed variation capacity,
the extended speed range, the direct torque and flux control and the excellent
dynamic behaviour.

In this document we will look not only at the complete integration of the software, but
also at the theoretical and practical aspects of the application. By the end of this
report the reader will have gained an understanding of each of the developmental
steps and will be able to apply this asynchronous drive solution to his own system.

The Field Orientated Controlled AC Induction Drive

2 Literature Number: BPRA076

The first section deals with the presentation of the field orientated controlled AC
induction drive; it explains the AC induction motor, the control hardware, the power
electronics hardware as well as the complete FOC structure. The second section
deals with the implementation of TMS320F240 drive speed control. Here, the details
of how and why the software is organized, the Per Unit model, the numerical
consideration, the current and speed sensing and scaling, the regulators, the system
transformations, the current model, the field weakening and the space vector
modulation are fully explained step by step. Results of intermediate experiments
illustrate the presentations in each block. At the end of this document flowcharts have
been incorporated to explain the operating system. The final experiment results
demonstrate the dynamic behaviour and effectiveness of the drive.

2. The Field Orientated Controlled AC Induction Drive
This chapter presents each component of the AC induction drive. The different sub-
chapters cover the motor parameters and the implemented control structure, including
both the control and the power hardware

2.1 The AC induction motor

The AC induction machine used in this explanation is a single cage three phase Y-
connected motor. The rated value and the parameters of this motor are as follows:
Rated power Pn=500W
Rated voltage Vn=127V rms (phase)
Rated current In=2.9A rms
Rated speed 1500rpm
Pole pairs 2
Slip 0.066

Rated torque M
P 500

2
60

3.41Nmnom
nom

nom

= =
×





=
ω π 1400

Stator resistance (RS) 4.495Ω
Magnetizing inductance (LH) 149mH

Stator leakage inductance (LσS) 16mH

Stator inductance (LS=LσS+LH) 165mH

Rotor leakage inductance (LσR) 13mH

Rotor inductance (LR=LσR+LH) 162mH

Rotor resistance (RR) 5.365Ω
Rotor inertia 0.95*10-3Kgm2

An embedded incremental encoder is also provided with this motor. This is capable of
1000 pulses per revolution and is used in this application to obtain the rotor
mechanical speed feedback.

The Field Orientated Controlled AC Induction Drive

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 3

2.2 The control hardware

The control hardware can be either the TMS320F240 Evaluation Module introduced
by Texas Instruments or the MCK240 developed by Portescap/Technosoft. In this
application the second board can be plugged directly on to the power electronics
board. The two boards contain a DSP controller TMS320F240 and its oscillator, a
JTAG, and an RS232 link with the necessary output connectors. The figure below
depicts the EVM board.

 Figure 1: Top View of the TMS320F240 Evaluation Module

The EVM board provides access to any signal from the DSP Controller and contains
test LED’s and Digital to Analog Converters. These characteristics are particularly
interesting during the developmental stage.

2.3 The Power Electronics Hardware

The power hardware used to implement and test this AC induction drive can support
an input voltage of 220V and a maximum current of 10A. It is based on six power
IGBT (IRGPC40F) driven by the DSP Controller via the integrated driver IR2130. The
power and the control parts are insulated by means of opto-couplers. The phase
current sensing is performed via two current voltage transducers supplied with +/-15V.
Their maximum input current is 10A, which is converted into a 2.5V output voltage.
Furthermore, this powered electronics board supports bus voltage measurement,
control LED’s and input current filter. All the power device securities are wired
(Shutdown, Fault, Clearfault, Itrip, reverse battery diode, varistor peak current
protection).

The Field Orientated Controlled AC Induction Drive

4 Literature Number: BPRA076

2.4 Complete Field Orientated Speed Control Structure Presentation

The control algorithm implemented in this application report is a rotor flux orientated
control strategy, based on the Field Orientated Control structure presented in [6].
Given the position of the rotor flux and two phase currents, this generic algorithm
operates the instantaneous direct torque and flux controls by means of coordinate
transformations and PI regulators, thereby achieving a really accurate and efficient
motor control. The generic FOC structure needs to be augmented with two modules in
order to address the asynchronous drive specificity.

With the asynchronous drive, the mechanical rotor angular speed is not, by definition,
equal to the rotor flux angular speed. This implies that the necessary rotor flux
position can not be detected directly by the mechanical position sensor provided with
the asynchronous motor used in this application. The Current Model block must be
added to the generic structure in the block diagram. This current model [1][3][5] takes
as input both iSq and iSd current as well as the rotor mechanical speed and gives the
rotor flux position as output. A complete description and the software implementation
for the necessary equations are given in a subsequent chapter.

The speed control of the AC induction drive is often split into two ranges: the low
speed range, where the motor speed is below the nominal speed, and the high speed
range, where the motor speed is higher than the nominal speed. Above the nominal
speed the effective back electromotive force (which depends on both the motor speed
and on the rotor flux) is high enough, given the DC bus voltage limitation, to limit the
current in the winding. As such, this limits both the torque production and the drive
efficiency (due to problems with magnetic saturation and heat dissipation). Where the
rotor flux has been maintained at its nominal value during the low speed operation so
as to achieve the highest mutual torque production, it must be reduced in the high
speed operation in order to avoid magnetic saturation and the generation of too high
back electromotive force. Reducing the rotor flux in this way extends the high
efficiency operating range of the drive. This functionality is integrated into the Field
Weakening module. A complete explanation and outline of the correct software
implementation are given in a later chapter.

The Field Orientated Controlled AC Induction Drive

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 5

These two induction motor control dedicated modules are added to the basic FOC
structure. This results in the following complete FOC AC induction drive structure:

θcm

SV
PWM

a,b,c

α,βiSq

iSd

iSα

iSβ

ia

ib

vSqref
PI

PI
vSdref

vSαref

vSβref

iSqref

iSdref

-

- 3-phase
Inverter

Induction

motor

VDC

Clarke t.

d,q

α,β

d,q

α,β
Park t.

Park-1 t.

current
model

PI
nref

-

n

Field
Weakening

 Figure 2: Complete AC Induction Drive Dedicated FOC Structure

Two phase currents feed the Clarke transformation module. These projection outputs
are indicated iSα and iSβ. These two components of the current provide the input of the
Park transformation that gives the current in the d,q rotating reference frame. The iSd

and iSq components are compared to the references iSdref (the flux reference) and iSqref

(the torque reference). The torque command iSqref corresponds to the output of the
speed regulator. The flux command iSdref is the output of the field weakening function
that indicates the right rotor flux command for every speed reference. The current
regulator outputs are vSdref and vSqref; they are applied to the inverse Park
transformation. The output of this projection are vSαref and vSβref, the components of the
stator vector voltage in the α,β orthogonal reference frame. These are the input of the
Space Vector PWM. The outputs of this block are the signals that drive the inverter.
Note that both Park and inverse Park transformations require the rotor to be in flux
position which is given by the current model block. This block needs the rotor
resistance as a parameter. Accurate knowledge and representation of the rotor
resistance is essential to achieve the highest possible efficiency from the control
structure.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

6 Literature Number: BPRA076

3. Field Orientated Speed Controlled AC Induction Drive Software
Implementation

This chapter deals with the practical aspects of the drive implementation. It describes
the software organization, the utilization of different variables and the handling of the
DSP Controller resource. In the second part the control structure for the per unit
model is presented. This explanation allows the reader to instantly adapt the given
software to match the parameters of his drive. As numerical considerations have been
made in order to address the problems inherent within fixed-point calculation, this
software can be used with a wide range of drive parameters and regulator
coefficients.

3.1 Software Organization

This software is based on two modules: the initialization module and the run module.
The former is performed only once at the beginning. The second module is based on
a waiting loop interrupted by the PWM underflow. When the interrupt flag is set, this is
acknowledged and the corresponding Interrupt Service Routine (ISR) is served. The
complete FOC algorithm is computed within the PWM ISR and thus runs at the same
frequency as the chopping frequency. The waiting loop can be easily replaced by a
user interface. Presentation of the interface is beyond the scope of this report, but is
useful to fit the control code and to monitor the control variables. An overview of the
software is given in the flow chart below:

H a rd w a re
In i t ia l iz a t io n

S W V a r ia b le s
In i t ia l iz a t io n

W a it in g
L o o p

S ta rt

P W M
IS R

 Figure 3: General Software Flowchart

The DSP Controller Full Compare Unit is used to generate the necessary pulsed
signals to the power electronics board. It is programmed to generate symmetrical
complementary PWM signals at a frequency of 10kHz, with TIMER1 as the time base
and with the DEADBAND unit disabled. The sampling period (T) of 100 µs can be
established by setting the timer period T1PER to 1000 (PWMPRD=1000).

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 7

The following figure illustrates the time diagram for the initialization and the operating
system.

PWMPRD=1000*50ns=50µs

Sampling Period T=100µs=2*PWMPRD

Software
 Start

Initialization

T1CNT

τ algorithm Waiting Time τ algorithm

PWM Underflow
Interrupt

 Figure 4: FOC Software Initialization and Operating System

3.1.1 DSP Controller Setup

This section is dedicated to the handling of the different DSP Controller resources
(Core and peripheral settings). First of all, the PLL unit is set so that the CPUCLK runs
at 20MHz based on the 10Mhz quartz provided on the EVM board. For the
developmental stage it is necessary to disable the watchdog unit: first set the Vccp pin
voltage to five volts utilising the EVM jumper JP5 and then set the two watchdog
dedicated registers to inactive. Finally, correctly set the core and EV mask registers to
enable the PWM underflow to interrupt serving.

3.1.2 Software Variables

The following lines show the different variables used in this control software and in the
equations and schemes presented here.
ia, ib, ic phase current
iSα, iSβ stator current (α,β) components
iSd, iSq stator current flux & torque comp.
iSdref, iSqref flux and torque command
Teta_cm or θcm rotor flux position
fs rotor flux speed
i_mR, imR magnetizing current
vSdref, vSqref (d,q) components of the stator voltage
vSαref, vSβref (α,β) components of the stator voltage (input of the SVPWM)
vDC DC bus voltage
vDCinvT constant using in the SVPWM
vref1, vref2, vref3 voltage reference used for SV sector determination
sector sector variable used in SVPWM
t1, t2 time vector application in SVPWM
taon, tbon, tcon PWM commutation instant

Field Orientated Speed Controlled AC Induction Drive Software Implementation

8 Literature Number: BPRA076

X, Y, Z SVPWM variables
n, nref speed and speed reference
iSqrefmin, iSqrefmax speed regulator output limitation
vmin,vmax d,q current regulator output limitation
Ki, Kpi, Kcor current regulator parameters
Kin, Kpin, Kcorn speed regulator parameters
xid, xiq, xin regulator integral components
epid, epiq, epin d,q-axis, speed regulator errors
Kr, Kt, K current model parameters
p3, p2, p1, p0 field weakening polynomial coeff
Kspeed, 4.12 speed formatting constant
SPEEDSTEP speed loop period
speedstep speed loop counter
encincr, encoder pulses storing variable
speedtmp occurred pulses in SPEEDSTEP
Kcurrent 4.12 current formatting constant
sinθcm, sinTeta_cm,
cosθcm, cosTeta_cm sine and cosine of the rotor flux position

3.2 Base values and PU model

Since the TMS320F240 is a fixed point DSP, a per unit (pu) model of the motor has
been used. In this model all quantities refer to base values. The base values are
determined from the nominal values by using the following equations, where In, Vn , fn

are respectively the phase nominal current, the phase to neutral nominal voltage and
the nominal frequency in a star-connected induction motor

b

b
b

nb

nb

nb

V

f

VV

II

ω

πω

=Ψ

=
=

=

2

2

2

and where Ib, Vb are the maximum values of the phase nominal current and voltage; ωb

is the electrical nominal rotor flux speed; Ψb is the base flux. The base values of the
motor used in this asynchronous drive are stated below.

Wb
V

rad
f

VVV

AII

b

b
b

nb

nb

nb

571.0
15.314

180
sec

15.3145022

18012722

1.49.222

===Ψ

=⋅==

≅⋅==

=⋅==

ω

ππω

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 9

The real quantities are implemented in to the control thanks to the pu quantities,
which are defined as follows:

b
S

bb

b

b

b

speedfluxrotor
f

ed rotor spemechanical*pairspolespeedrotorelectrical
n

V

V
v

I

I
i

ω

ωω

ψ

=

==

Ψ
Ψ=

=

=

Where L��Y��ψ��Q��I6 are respectively pu current, voltage, flux, electrical rotor speed and
rotor flux speed. This model can be followed to ensure the easy implementation of the
control algorithm into a fixed point DSP.

3.3 Magnetizing current considerations

In the classic speed range (where speed is lower or equal to the nominal speed) the
FOC structure requires the magnetizing current as input. Given the following motor
equivalent circuit, valid only in stationary steady state, the magnetizing current might
be a priori calculated.

 Figure 5: Steady State Phase Electrical Model

Assuming that the motor is running at nominal speed without any load (in other words
that slip is equal to zero) and knowing the paramaters of the motor, then the
magnetizing current is simply equal to the nominal phase voltage (in this case 127V
rms) divided by the equivalent impedance.

A useful tip is to know that the magnetizing current is usually between 40% and 60%
of the nominal current.

RS LσS LσRRR







 −

s

s1
RRHL

ImR
Itorque

V

IS

Field Orientated Speed Controlled AC Induction Drive Software Implementation

10 Literature Number: BPRA076

3.4 Numerical considerations

The PU model has been developed so that the software representation of speed
current and flux is equal to one when the drive has reached its nominal speed under
nominal load and magnetizing current. Bearing in mind that during the transient the
current might reach higher values than the nominal current (Ib) in order to achieve a
short response time, and assuming that the motor speed range might be extended
above the nominal speed (ωb), then every per unit value might be greater than one.
This fact forces the implementation to foresee these situations and thereby determine
the most suitable numerical format.

3.4.1 The numeric format determination

The numeric format used in the major part of this application is such that 4 bits are
dedicated to the integer part and 12 bits are dedicated to the fractional part. This
numeric format is denoted by 4.12 f. The resolution for this format is:

00024414.0
2

1
12

=

With the sign extension mode set, the link between the real quantity and its 4.12
representation is illustrated by the following chart:

24.4e-5 7.99975586

32767

-8

-32768

 Figure 6: 4.12 Format Correspondence Diagram

The reason for selecting this particular format is that the drive control quantities are
(for the most part) not greater than four times their nominal values (in other words, not
greater than four when the pu model is considered). Where this is not the case,a
different format will be chosen. The selection of a demonstration range of [-8;8]
ensures that the software values can handle each drive control quantity, not only
during steady state operation but also during transient operation. The next two
paragraphs outline some of the numerical considerations and some operations with a
generic x.y format in order to explain the different formats that can be found in this
application report.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 11

The x.y numeric format uses x bits for the integer part and y bits for the fractional part.
The resolution is 2− y ; if z is the pu value to implement, then its software value is z y⋅2
in x.y format. Care must be taken when performing operations with a generic x.y
format. Adding two x.y-formatted numbers may result in numerical representation
overflow. To avoid this kind of problem, one possible solution is to perform the
addition in the high side of the Accumulator and to set the saturation bit. Another
option is to assume that the result will not be out of the maximum range. This second
solution can be used in this implementation if we know that the control quantities do
not exceed half of the maximum value in the 4.12 format. The result can still be
represented in the 4.12 format and directly considered as 4.12 format, thereby
allowing for a higher level of precision.

As far as the multiplication is concerned, the result (in the 32-bit Accumulator) must
either be shifted x position to the left and the most significant word stored, or be
shifted y position to the right with the last significant word being stored. The stored
result is in x.y format. The figure below shows two x.y-formatted 16-bit variables, that
will be multiplied by one another. The result of this multiplication in x.y format is
represented in gray in the 32-bit Accumulator. Both solutions are depicted below.

x y

MSB LSB

x y

MSB LSB

*

MSB LSB

high word low word

x y

x y

x y

1

2

 Figure 7: 1) left shift & store high accumulator, 2) right shift & store low
accumulator

Note that in this application there are also constants that can not be represented by
the 4.12 format. Operations requiring different formats follow exactly the same
process as that explained above.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

12 Literature Number: BPRA076

3.5 Current Sensing and Scaling

The FOC structure requires two phase currents as input. In this application current-
voltage transducers (LEM type) sense these two currents. The current sensor output
therefore needs to be rearranged and scaled so that it can be used by the control
software as 4.12 format values. The complete process of acquiring the current is
depicted in the figure below:

interfaceA/D
range

adjustementKcurrent

TMS320F240

LEM

10-bit1023
 :
 0

511
 :
-512

I

ix

x=a,b

 Figure 8: Current Sensing and Scaling Block Diagram

In this application the LEM output signal can be either positive or negative. This signal
must therefore be translated by the analogue interface into a range of (0;5V) in order
to allow the single voltage ADC module to read both positive and negative values.
The block diagram below shows the different steps of the implemented current
sensing:

LEM Output
VoltageOA Output

VoltageADC Input

2.5V analog
Offset

0

2.5

5

Volts

-2.5

2.5

0

Volts Volts

LEM

Imax

-Imax

Imax

 Figure 9: Current Sensing Interface Block Diagram

Note that Imax represents the maximum measurable current, which is not necessarily
equal to the maximum phase current. This information is useful at the point where
current scaling becomes necessary. The ADC input voltage is now converted into a
ten bits digital value. The 2.5V analogue offset is digitally subtracted from the
conversion result, thereby giving a signed integer value of the sensed current.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 13

The result of this process is represented below:

511

0 Sensed Current
Imax

-Imax

-512

Numerical Value
before Scaling

 Figure 10: Sensed Current Values before Scaling

Like every other quantity in this application, the sensed phase currents must now be
expressed with the pu model and then be converted into the 4.12 format. Notice that
the pu representation of the current is defined as the ratio between the measured
current and the base current and that the maximum current handled by the hardware
is represented by 512. The pu current conversion into the 4.12 format is achieved by
multiplying the sensed current by the following constant:

)
512

(

4096

maxI

I
K

b
current ⋅

=

In one single calculation, this constant performs not only the pu modeling but also the
numerical conversion into 4.12 format. When nominal current flows in a motor running
at nominal speed, the current sensing and scaling block output is 1000h (equivalent to
1pu). The reader may change the numerical format by simply amending the
numerator value and may adapt this constant to its own current sensing range by
simply recalculating KcurrenW with its own Imax value.

In this application the maximum measurable current is Imax=10A . The constant value
is:

K h fcurrent = ⋅ = ⇔
4096

512 41

10

19 51 1383 88
(

.
)

. .

Note that Kcurrent is outside the 4.12 format range. The most appropriate format to
accommodate this constant is the 8.8 format, which has a resolution of:

0 00390625
1

28. =

and the following correspondence (Figure 11):

Field Orientated Speed Controlled AC Induction Drive Software Implementation

14 Literature Number: BPRA076

39.06e-4127.996

32767

-128

-32768

 Figure 11: 8.8 Numerical Format Correspondence Diagram

The two phase currents are sampled simultaneously by means of the DSP Controller
by using one channel of each ADC module per current. In this application channel 1
(ADCIN0) and channel 9 (ADCIN8) are used to sample the phase currents. Below is
the code that waits for the LEM output to be converted and then transforms the
conversion result into a 4.12 representation of one phase current.

* Current sampling - AD conversions
* N.B. we will have to take only 10 bit (LSB)

ldp #DP_PF1
splk #1801h,ADC_CNTL1 ;ia and ib conversion start

;ADCIN0 selected for ia A/D1
;ADCIN8 selected for ib A/D2

conversion
bit ADC_CNTL1,8
bcnd conversion,tc ;wait approximatly 6us
lacc ADC_FIFO1,10 ;10.6 format
ldp #ctrl_n ;control variable page
sach tmp
lacl tmp
and #3ffh
sub #512 ;then we have to subtract the offset (2.5V) to have

;positive and negative values of the sampled current
sacl tmp
spm 3 ;PM=11, 6 right shift after multiplication
lt tmp
mpy Kcurrent
pac ;
sfr
sfr
sacl ia ;PM=11, +2 sfr= 8 right shift
spm 0
sub #112 ;then we subtract a DC offset

;(that should be zero, but it
;isn't)

sacl ia ;sampled current ia, 4.12 format
spm 0 ;PM=00

* END Current sampling - AD conversions

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 15

For the minimum and maximum values of the phase current, the following table shows
the contents of the ADCFIFO1 register:

ADC module
Input Voltage

Related
current

ADCFIFO1
hexa. Value

ADCFIFO1
binary value

0 V Imin 0000h 0000 0000 0000 0000b
5 V Imax FFC0h 1111 1111 1100 0000b

This current sensing and scaling module requires 45 words of ROM, 4 words of RAM
and 1.98MIPS (this includes the conversion time).

3.6 Speed Sensing and Scaling

In this AC induction drive a 1000 pulse incremental encoder produces the rotor speed.
The two sensor output channels (A and B) are wired directly to the QEP unit of the
DSP Controller TMS320F240, which counts both edges of the pulses. The software
speed resolution is thus based on 4000 increments per revolution. The QEP assigned
timer counts the number of pulses, as recorded by the timer counter register (T3CNT).
At each sampling period this value is stored in a variable named encincr. As the
mechanical time constant is much lower than the electrical one, the speed regulation
loop frequency might be lower than the current loop frequency. The speed regulation
loop frequency is achieved in this application by means of a software counter. This
counter takes as input clock the PWM interrupt. Its period is the software variable
called SPEEDSTEP. The counter variable is named speedstep. When speedstep is
equal to SPEEDSTEP, the number of counted pulses is stored in another variable
called speedtmp and thus the speed can be calculated. The following scheme depicts
the structure of the speed feedback generation:

counter
(QEP circuit)

∗4
encoderKspeed

n if
speedstep=SPEEDSTEP

encincrspeedtmp

QEP1 (A)

QEP2 (B)

TMS320F240

 Figure 12: Speed feedback obtaining block scheme

Assuming that np is the number of encoder pulses in one SPEEDSTEP period when
the motor turns at the nominal speed, a software constant Kspeed should be chosen as
follows:

01000h K nspeed p= ⋅

to let the speed feedback be transformed into a 4.12 format, that can be used with the
control software. In this application the nominal speed is 1500 rpm, SPEEDSTEP is
set to 30 and then np can be calculated as follows:

n SPEEDSTEP Tp =
⋅

⋅ ⋅ =
1500 4000

60
300

and hence Kspeed is given by:

Field Orientated Speed Controlled AC Induction Drive Software Implementation

16 Literature Number: BPRA076

K da hspeed = = ⇔
4096
300

13653 0 7. 8.8f

Note that Kspeed is out of the 4.12 format range. The most appropriate format to handle
this constant is the 8.8 format. The speed feedback in 4.12 format is then obtained
from the encoder by multiplying speedtemp by Kspeed . The flow chart and the code for
speed sensing is presented below:

T3CNT Read
Value in encincr

speedstep=speedstep-1

speedstep=0?

n=Kspeed*speedtemp

speedstep=SPEEDSTEP

speedtemp=
speedtemp+encincr

YES

NO

 Figure 13: Speed Feedback Computation Flowchart

* Measured speed and control

*** encoder pulses reading

ldp #DP_EV
lacc T3CNT ;we read the encoder pulses
splk #0000h,T3CNT
ldp #ctrl_n ;control variable page
sacl encincr

*** END Encoder pulses reading

* Calculate speed and update reference speed variables

lacc speedstep ;are we in speed control loop
;(SPEEDSTEP times current control loop)

sub #1
sacl speedstep
bcnd nocalc,GT ;if we aren't, skip speed calculation

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 17

**
* Speed calculation from encoder pulses
**

spm 3 ;PM=11, 6 right shift after multiplication
lt speedtmp ;multiply encoder pulses by Kspeed

;(8.8 format constant)
;to have the value of speed

mpy #Kspeed
pac
sfr
sfr ;PM=11, +2 sfr= 8 right shift
sacl n
lacc #0 ;zero speedtmp for next
;calculation
sacl speedtmp
lacc #SPEEDSTEP ;restore speedstep to the value

;SPEEDSTEP
sacl speedstep ;for next speed control loop
spm 0 ;PM=00, no shift after multiplication

**
* END Speed calculation from encoder pulses
**

This speed sensing and scaling module requires 28 words of ROM, 4 words of RAM
and 0.244 MIPS (which includes the speed reference acquisition time).

3.7 The PI regulator

The PI (Proportional-Integral) regulators are implemented with output saturation and
with integral component correction. Please refer to report [6] for any further PI
structure information. The constants Kpi, Ki, Kcor (proportional, integral and integral
correction components) are selected depending on the sampling period and on the
motor parameters. In this application (T=100µs sampling time) the current loop
constants are:

K h

K h

K
K

K
h

i

pi

cor
i

pi

= ⇔
= ⇔

= = ⇔

0 0625 0100

1 01000

0 0625 0100

.

.

And the speed loop constants are:
K h

K Bh

K
K

K
Bh

in

pin

corn
in

pin

= ⇔
= ⇔

= = ⇔

0 0129 0035

4 510 0482

0 00268 0

.

.

.

Note that all constants are in 4.12 format and the integral correction component is
calculated by using the following formula:

K
K

Kcor
i

pi

=

Field Orientated Speed Controlled AC Induction Drive Software Implementation

18 Literature Number: BPRA076

As speed and current regulator have exactly the same software structure, only the
speed regulator code is given below.

* Speed regulator with integral component correction

lacc n_ref
sub n
sacl epin ;epin=n_ref-n, 4.12 format
lacc xin,12
lt epin
mpy Kpin
apac
sach upi,4 ;upi=xin+epin*Kpin, 4.12 format

;here we start to saturate
bit upi,0
bcnd upimagzeros,NTC ;If value >0 we branch
lacc #Isqrefmin ;negative saturation
sub upi
bcnd neg_sat,GT ;if upi<ISqrefmin then branch to saturate
lacc upi ;value of upi is valid
b limiters

neg_sat
lacc #Isqrefmin ;set acc to -ve saturated value
b limiters

upimagzeros ;Value is positive
lacc #Isqrefmax ;positive saturation
sub upi
bcnd pos_sat,LT ;if upi>ISqrefmax then branch to saturate
lacc upi ;value of upi valid
b limiters

pos_sat
lacc #Isqrefmax ;set acc to +ve saturated value

limiters
sacl iSqref ;Store the acc as reference value
sub upi
sacl elpi ;elpi=iSqref-upi, 4.12 format

lt elpi ;if there is no saturation elpi=0
mpy Kcorn
pac
lt epin
mpy Kin
apac
add xin,12
sach xin,4 ;xin=xin+epin*Kin+elpi*Kcorn, 4.12 format

* END Speed regulator with integral component correction

where i Sqrefmin and i Sqrefmax are the speed regulator limitations. Each PI regulator
module requires 44 words of ROM, 10 words of RAM and 0.44 MIPS.

3.8 Clarke and Park transformation

In the next two paragraphs, the TMS320F240 code and experimental results relevant
to both the Clarke and Park transformation will be presented. The corresponding
theoretical background explanations have already been handled in [6].

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 19

3.8.1 The (a,b)->(α,β) projection (Clarke transformation)

In the following code the considered constant and variables are implemented in 4.12
format.

* Clarke transformation
* (a,b) -> (alfa,beta)
* iSalfa = ia
* iSbeta = (2 * ib + ia) / sqrt(3)

lacc ia
sacl iSalfa ;iSalfa 4.12 format
add ib
neg
sacl ic

lacc ib,1 ;iSbeta = (2 * ib + ia) / sqrt(3)
add ia
sacl tmp
lt tmp
mpy #SQRT3inv ;SQRT3inv = (1 / sqrt(3)) = 093dh

;4.12 format = 0.577350269
pac
sach iSbeta,4 ;iSbeta 4.12 format

* END Clarke transformation

where SQRT3inv is the following constant:

SQRT inv dh3
1

3
0577 093= = ⇔. 4.12 f

Scope pictures of the a,b,c currents (input of the Clarke module) and the α,β currents
(output of this module) are presented below.

 Figure 14: AC Induction Drive Phase Currents

This balanced three-phase system is shown below when transformed into the (α,β)
orthogonal frame:

Field Orientated Speed Controlled AC Induction Drive Software Implementation

20 Literature Number: BPRA076

 Figure 15: Output of the Clarke Transformation Module

The upper visual depicts the two coordinates Clarke transformation system. The lower
visual is an X-Y representation of the transformation output where α is the X input and
β is the Y input. This illustrates the resulting orthogonal system.

This Clarke transformation module requires 12 words of ROM, 6 words of RAM and
0.24 MIPS.

3.8.2 The (αα,ββ)->(d,q) projection (Park transformation)

In the following code the constant and variables under consideration are implemented
in 4.12 format. The quantity Teta_cm represents the rotor flux position calculated by
the current model.

* Park transformation
* (alfa, beta)->(d,q)
* iSd=iSalfa*cos(Teta_cm)+iSbeta*sin(Teta_cm)
* iSq=-iSalfa*sin(Teta_cm)+iSbeta*cos(Teta_cm)

lt iSbeta
mpy sinTeta_cm
lta iSalfa
mpy cosTeta_cm
mpya sinTeta_cm
sach iSd,4 ;iSd 4.12 format

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 21

lacc #0
lt iSbeta
mpys cosTeta_cm
apac
sach iSq,4 ;iSq 4.12 format

* END Park transformation

SinTeta_cm and cosTeta_cm indicate respectively the Teta_cm sine and cosine values.
The modalities required to determine these values are explained later in this
document.

This Park transformation module requires 12 words of ROM, 6 words of RAM and
0.24 MIPS.

3.9 The current model

This chapter represents the core module of the Field Orientated Controlled AC
induction drive. This module takes as input i Sd , i Sq plus the rotor electrical speed. In
addition to the two essential equations, the numerical considerations, code and
experimental results will also be discussed.

3.9.1 Theoretical background

The current model [1][2][3][5] consists of implementing the following two equations of
the motor in d,q reference frame:

bmRR

qS

b
S

mR
mR

RdS

iT

i
n

dt

d
f

i
dt

di
Ti

ω
θ

ω
+==

+=

1

where θ is the rotor flux position, imR the magnetizing current, and where

T
L

RR
R

R

=

is the rotor time constant. Knowledge of this constant is critical to the correct
functioning of the current model as it is this system that outputs the rotor flux speed
that will be integrated to get the rotor flux position. Assuming that i iqS qSk k+

≈
1

 the above

equations can be discretized as follows:

1

1

1

1

)(

1

+

+

+

+=

−+=

+
k

k

k

kkkk

mR

qS

bR
kS

mRdS
R

mRmR

i

i

T
nf

ii
T

T
ii

ω

Implementation of the software for these equations is handled in the following
chapters.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

22 Literature Number: BPRA076

3.9.2 Numerical consideration

Let the two above equation constants
T

TR

 and
bRT ω

1
 be renamed respectively Kt and

KR . In this application their values are:

K
T

T
eh

K
T

b h

R
R

t
R b

= =
⋅

⋅
= ⋅ ⇔

= =
⋅ ⋅

= ⋅ ⇔

−

−
−

−
−

100 10

30195 10
33117 10 0

1 1

30195 10 31415
10542 10 01 0

6

3
3

3
3

.
.

. .
.

 4.12 f

 4.12 f
ω

Once the rotor flux speed (fS) has been calculated, the necessary rotor flux position
(θcm) is computed by the integration formula:

Tf
kkk Sbcmcm ωθθ +=

+1

As the rotor flux position range is [0;2π], 16 bit integer values have been used to
achieve the maximum resolution. The following chart demonstrates the relationship
between the flux position and its numerical representation:

9.58e-5 2π

65535

0 θcm in rad

 Figure 16: Link between Rotor Flux Position and its Numerical Representation

In the above equation, let TfSbω be called θincr. This variable is the angle variation
within one sample period. At nominal operation (in other words when fS=1, mechanical
speed is 1500rpm) θincr is thus equal to 0.031415rad. In one mechanical revolution

performed at nominal speed there are
2

0 031415
200

π
.

≈ increments of the rotor flux

position. Let K be defined as the constant, which converts the (0;2π) range into the
(0;65535) range. K is calculated as follows:

K h= = ⇔65536

200
327 68 0148.

With the help of this constant, the rotor flux position computation and its formatting
becomes

θ θcmk cm Sk k
Kf+ = +1

The θcmk
variable is thus represented as a 16-bit integer value. This position is used in

the transformation modules as the entry point in the sine look-up table.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 23

iSd

iSq

n

θcmcurrent
model

 Figure 17: Input and output for the current model block

In conclusion, the current model is a block, as depicted above, with an input variable
idS, iqS, n (represented in 4.12 format) and the rotor flux position θmc (represented as a
16 bit integer value) as output.

3.9.3 Code and experimental results

The code for the current model is the following:

* Current Model

lacc iSd
sub i_mr
sacl tmp
lt tmp
mpy #Kr
pac
sach tmp,4
lacc tmp
add i_mr
sacl i_mr ;i_mr=i_mr+Kr*(iSd-i_mr), 4.12 f
bcnd i_mrnotzero,NEQ
lacc #0
sacl tmp ;if i_mr=0 then tmp=iSq/i_mr=0
b i_mrzero

i_mrnotzero
*** division (iSq/i_mr)

lacc i_mr
bcnd i_mrzero,EQ
sacl tmp1
lacc iSq
abs
sacl tmp
lacc tmp,12
rpt #15
subc tmp1
sacl tmp ;tmp=iSq/i_mr
lacc iSq
bcnd iSqpos,GT
lacc tmp
neg
sacl tmp ;tmp=iSq/i_mr, 4.12 format

iSqpos
i_mrzero
*** END division ***

lt tmp
mpy #Kt
pac
sach tmp,4 ;slip frequency, 4.12 format
lacc tmp ;load tmp in low ACC
add n
sacl fs ;rotor flux speed, 4.12 format,

Field Orientated Speed Controlled AC Induction Drive Software Implementation

24 Literature Number: BPRA076

;fs=n+Kt*(iSq/i_mr)
*** rotor flux position calculation ***

lacc fs
abs
sacl tmp
lt tmp
mpy #K
pac
sach tetaincr,4
bit fs,0
bcnd fs_neg,TC
lacl tetaincr
adds Teta_cm
sacl Teta_cm
b fs_pos

fs_neg
lacl Teta_cm
subs tetaincr
sacl Teta_cm

;Teta_cm=Teta_cm+K*fs=Teta_cm+tetaincr
;(0;360)<->(0;65535)

fs_pos
rpt #3
sfr
sacl Teta_cm1 ;(0;360)<->(0;4096), this variable

;is used only for the visualization

* END Current Model

This current model module requires 62 words of ROM, 10 words of RAM and 0.88
MIPS.

The scope picture below depicts, from top to bottom, the computed rotor flux position,
the flux component and the torque component in steady state operation.

 Figure 18: Rotor Flux Position, Flux and Torque Components

Note that this scope picture has been stored when the motor is running at nominal
speed without any load. This makes the slip equal to zero, thus leading to the 20ms
period of the rotor flux position. This also makes the torque component roughly equal
to zero.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 25

3.10 Generation of sine and cosine values

In order to generate sine and cosine values, a sine table and indirect addressing
mode by auxiliary register AR5 have been implemented. As a compromise between
the position accuracy and the used memory minimization, this table contains 28=256
words to represent the [0;2π] range. The above computed position (16 bits integer
value) therefore needs to be shifted 8 positions to the right. This new position (8 bits
integer value) is used as a pointer (named Index) to access this table. The output of
the table is the sinθcm value represented in 4.12 format. The following figure shows
the Teta_cm, the Index and the sine look-up table.

0

θcm >>8
Index

Sine Table
Address

π/2

π

3π/2

0

θcm

4095

201

0

201

4095

101

4091

4096

4091

101

61441

65335

65335

61441

65435

61445

61440

61445

65435

 Figure 19: Sin θθcm Calculation using the Sine Look-up Table

Note that to have the cosine value, 256/4=40h must be added to the sine Index. The
assembly code to address the sine look-up table is given below:

**
* sinTeta_cm, cosTeta_cm calculation
**

mar *,ar5
lt Teta_cm ;current model rotor flux position
mpyu SR8BIT
pac
sach Index
lacl Index
and #0ffh
add #sintab
sacl tmp
lar ar5,tmp
lacl *
sacl sinTeta_cm ;sine Teta_cm value, 4.12 format
lacl Index ;The same for Cos ...

;cos(teta)=sin(teta+90ø)
add #40h ;90ø = 40h elements of the table
and #0ffh
add #sintab
sacl tmp
lar ar5,tmp

Field Orientated Speed Controlled AC Induction Drive Software Implementation

26 Literature Number: BPRA076

lacc *
sacl cosTeta_cm ;cosine Teta_cm value, 4.12 format

**
* END sinTeta_cm, cosTeta_cm calculation
**

This Sine and Cosine module requires 24 words of ROM, 6 words of RAM and 0.33
MIPS.

3.11 The Field Weakening

In certain circumstances, it is possible to extend the control speed range beyond the
nominal speed. This chapter explains one possible process to follow in order to
achieve such a speed range extension.

3.11.1 Field Weakening Principles

The aim of this application was to reach several times the nominal speed. The
following theoretical background will show that it is possible to reach up to four times
the nominal speed under certain conditions. Under nominal load, the mechanical
power increases as a linear function of speed up to the nominal power (reached when
speed is equal to its nominal value). In this operating range the flux is maintained
constant and equal to the nominal flux. Given that mechanical power is proportional to
torque time speed and that its nominal value has been reached when speed is equal
to 1500rpm (nominal value), the torque production must be reduced if a speed greater
than 1500rpm is desired. This is shown in the following chart:

Pnominal

Nominal
Speed

SpeedExtended
Speed Range

Normal
Speed Range

Mechanical Power

Nominal
Torque

Output Torque

Constant Torque
Region

Constant Power
Region

Constant Power*Speed
Region

 Figure 20: Field weakening Real Operation

Note the three different zones. In the constant power region the nominal torque
production behaves like the inverse function of the speed, thereby enabling constant
power production (P=Mω). In the constant Power*Speed region the nominal torque
production behaves like the inverse function of the squared speed. To explain this
brake between the last two zones, the maximal torque function in the steady state
operation must be studied here.

According to [1][11] in the steady state operation, the maximum torque can be
calculated approximately by using the following formula:

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 27

() () ()RSS

p

RS

p

LL

V

f

z

LL

Vz
M

σσσσ πω +
=

+
≈

2

2

2

2max *
22

3
*

2

3

where SLσ and RLσ are respectively the stator and rotor leakage inductance and zp is

the number of pole pairs. In the first zone, the maximum torque function is equal to a
constant as V (the phase voltage) increases linearly with speed. Above the nominal
speed, the phase voltage is maintained constant and equal to its nominal value,
thereby causing the maximum torque function to behave as the inverse function of
squared speed. This results in the following picture

Nominal
Speed

SpeedExtended
Speed Range

Normal
Speed Range

Nominal
Torque

Constant Torque
Region

Constant Power
Region

Constant Power*Speed
Region

Maximum
Torque ∝ 1

2ω

∝ 1
2ω

∝ 1
ω

 Figure 21: Maximum and Nominal Torque vs Speed

Note that the nominal torque curve crosses the maximum torque curve. This
crossover point is the brake point delineating the constant power region and the
constant power*speed region. Note also that the nominal torque curve crosses the
depicted steady state torque curves in the stability zone (thereby making nominal
torque smaller than the maximum torque) until the brake point. Once this point has
been crossed, the nominal torque is rendered equal to the maximum torque, forcing
the power function to behave like the inverse function of speed. With help of the
formula given above and the motor parameters, it is possible to predict the crossing
point.

In this application the crossing point occurs when speed is equal to 1.7 times the
nominal speed (1.8*1500=2700rpm). A much bigger ratio can be achieved by simply
controlling a motor with a higher maximum/nominal torque ratio, thus shifting the
crossing point. The experimental measurements presented below confirm the
computed crossing point.

3.11.2 Field Weakening Constraints

The drive constraints for the extended speed range are, firstly, the phase voltages
and, secondly, the phase currents. Given that the phase voltage references increase
with speed and that their value can not exceed the nominal value, the flux component
must then be reduced to a value which allows the nominal phase voltage to be
maintained and the desired speed to be reached.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

28 Literature Number: BPRA076

Knowing that phase currents increase with load, the maximum resistive torque put on
the drive during the extended speed range operation must be set to a value that
maintains the phase currents at a level no greater than their nominal value. The
maximum resistive torque decreases then as a function of speed.

In the following scheme, both the maximum phase voltage and the flux references are
shown for normal and extended speed range.

Nominal voltage

Nominal
Speed Speed

Extended
Speed Range

Normal
Speed Range

Phase Voltage

Nominal Flux

Flux

 Figure 22: Field Weakening Voltage Constraints

Note that both voltage and current constraints must be respected in steady state
operation. In fact, during transient operation the phase current might reach several
times its nominal value without any risk to the drive. This assumes that the resulting
overheating of the drive can be dissipated before performing another transient
operation.

3.11.3 TMS320F240 Field Weakening Implementation

As far as the software implementation is concerned, the field-weakening module takes
as input the 4.12 format speed reference and gives as output the flux reference
(proportional to iSdref).

iSdrefnref

Field
Weakening

 Figure 23: Field Weakening Block Diagram

The field weakening implementation requires the following steps to be performed:
some motor operating points measurements, one off-line polynomial interpolation and
one polynomial implementation.

The normal speed range flux reference has been set so that the phase voltage
achieved is equal to the nominal value when the motor is running at nominal speed
without load (slip is thus almost equal to zero and phase current is only magnetizing

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 29

current). In order to protect the drive, this drive has been developed using only 90% of
the nominal voltage. There would be no problem in performing the same process with
100% of the nominal phase voltage. This technique leads to a flux reference equal to
0.6pu at nominal speed. Above the nominal speed, the following table gives the
measured flux references at different speeds keeping the phase voltage at 0.9pu, up
to four times the nominal speed.

nref (pu) Idsref (pu) nref (pu) Idsref (pu)
1.1 0.52 2.6 0.200
1.2 0.47 2.7 0.195
1.3 0.42 2.8 0.190
1.4 0.39 2.9 0.188
1.5 0.36 3.0 0.185
1.6 0.33 3.1 0.182
1.7 0.31 3.2 0.179
1.8 0.29 3.3 0.175
1.9 0.27 3.4 0.172
2.0 0.26 3.5 0.170
2.1 0.25 3.6 0.168
2.2 0.23 3.7 0.166
2.3 0.22 3.8 0.165
2.4 0.21 3.9 0.164
2.5 0.21 4.0 0.163

In order to get a continuous field weakening, all along the extended speed, an off-line
interpolation of these measured points has been achieved by means of the MATLAB
polyfit and polyval functions. As a compromise between interpolation correctness and
software optimization, the third order polynomial interpolation appeared to be the most
appropriate solution. The MATLAB output polynomial is

i n n nsdref ref ref ref= − + − +0 0195 0 2196 08158 1173 2. * . * . * .

As the speed reference pu value reaches four and since this value needs to be raised
to the third power, the 8.8 format has been selected to implement this field weakening
function. The above polynomial coefficients become, in 8.8 format:

i n n nsdref ref ref ref= − + − +5 56 209 3003 2* * *

Note that the output flux reference (iSdref) needs to be in 4.12 format. Below the reader
can find the MATLAB figure, representing the measured points, the MATLAB
interpolated points and the resulting 8.8 implementation points.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

30 Literature Number: BPRA076

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
-.measured points,--interpolated points,*8.8f polynomial

n_ref [pu]

iSdref
[pu]

 Figure 24: Matlab Interpolation Results and Numerical Implementation Result

Once this polynomial has been implemented it is possible to elicit the torque and
power characteristics of this drive. These points are measured by first running the
unloaded motor at the desired speed (in the extended speed range). The resistive
torque is then increased until the phase currents reach their nominal value or the
system becomes unstable. At this point (motor runs at desired speed under nominal
voltage) mechanical power, produced torque and running speed are stored. By using
the MATLAB plot function it is possible to produce the two weakening characteristics
shown in the experimental field below.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5
Torque [Nm]

speed [pu]
0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

100

150

200

250

300

350

400

450

500
power [W]

speed [pu]

 Figure 25: Experimental Torque & Power Charact. in the Extended Speed Range

The first picture shows that nominal torque can be achieved all along the normal
speed range. This result is one of the most interesting advantages of the Field
Orientated Control.

Looking at the power versus speed chart, note the three different regions. The
experimental brake point has been measured at 1.5 times the nominal speed; given
the uncertainty on the motor leakage inductance, this result confirms the theoretical
model. Of course it is possible to extend the constant power region up to three times

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 31

the nominal value using exactly the same control software, simply by choosing an

induction motor with a higher
M

M
maximum

nominal

ratio.

* Field-weakening function
* Input:n_ref, output iSdref 4.12 format

spm 2 ;PM=10, four left shift after multiplication
lacc n_ref
abs ;we consider absolute value of speed reference
rpt #3
sfr
sacl n_ref8_8 ;speed reference 8.8f
sub #100h
bcnd noFieldWeakening,LEQ
lacc p0,12
lt n_ref8_8
mpy p1
apac
sach tmp,4 ;tmp=p0+p1*n_ref
sqra n_ref8_8
pac
sach tmp1,4
lacc tmp,12
lt tmp1 ;tmp1=n_ref^2
mpy p2
apac
sach tmp,4 ;tmp=p0+p1*n_ref+p2*(n_ref^2)
lt tmp1
mpy n_ref8_8
pac
sach tmp1,4 ;tmp1=n_ref^3
lacc tmp,12
lt tmp1
mpy p3
apac
sach tmp,4 ;tmp=p0+p1*n_ref+p2*(n_ref^2)+p3*(n_ref^3)
lacc tmp,4 ;iSdref 8.8 f
sacl iSdref ;iSdref 4.12 f with Field Weakening
b endFW

noFieldWeakening
lacc #2458 ;iSdref=0.6 pu
sacl iSdref ;iSdref 4.12 f without Field Weakening

endFW
spm 0 ;PM=0

* END Field Weakening function

This Field Weakening module requires 40 words of ROM, 10 words of RAM and 0.33
MIPS.

3.12 The Space Vector Modulation

The Space Vector Modulation is a highly efficient way to generate the six pulsed
signals [6] necessary at the power stage. The SVM needs the reference voltages
vSαref, vSβref as input, the DC bus voltage as parameter and gives the three PWM
patterns as output. These values are once again expressed in pu quantities, so that

Field Orientated Speed Controlled AC Induction Drive Software Implementation

32 Literature Number: BPRA076

they may be implemented in 4.12 format. The conversions of these inputs into the
required numerical format are given below.

f 4.12 81722.1
180

310
dhb

V

V
v

b

DC
DC ⇔===

where VDC is the DC bus voltage in the used inverter and vDC the correspondent pu
value. The software [3][4] presented below also requires the following constant
definition:

v
T

v

PWMPRD

v
hDCinvT

DC DC

= ⇔ = = ⇔
2

1000

1722
581 245

.

and the following variable definition:
v v

v v v

v v v

X v v

Y v v v v

Z v v v v

ref S ref

ref S ref S ref

ref S ref S ref

DCinvT S ref

DCinvT S ref DCinvT S ref

DCinvT S ref DCinvT S ref

1

2

3

1

2
3

1

2
3

3

3

2

3

2

3

2

3

2

=

= −

= − −

=

= +

= −

β

α β

α β

β

β α

β α

()

()

According to [6], the first step to undertake is to determine in which sector the voltage
vector defined by vSαref, vSβref is found. The following few code lines give the sector as
output:

sector determination

: :

: :

: :

tor:=

IF v THEN A = , ELSE A =

IF v THEN B = ELSE B =

IF v THEN C = , ELSE C =

A+ B+ C

ref

ref

ref

1

2

3

0 1 0

0 1 0

0 1 0

2 4

>
>
>

,

sec

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 33

The second step to perform is to calculate and saturate the duration of the two sector
boundary vectors application as shown below:

CASE OF

 t Z t Y

 t Y t X

t Z t X

 t X t Z

t X t Y

t Y t Z

IF (t t) PWMPRD THEN

 t t
PWMPRD

t t

 t t
PWMPRD

t t

SAT

SAT

 sector

1

end times calculation

Saturations

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 1
1 2

2 2
1 2

2

3

4

5

6

= =
= = −
= − =
= − =
= = −
= − = −

+ >

=
+

=
+

The third step is to compute the three necessary duty cycles. This is shown below:

t
PWMPRD t t

t t t

t t t

aon

bon aon

con bon

=
− −

= +
= +













1 2

1

2

2

The last step is to assign the right duty cycle (txon) to the right motor phase (in other
words, to the right CMPRx) according to the sector. The table below depicts this
determination.

tbonCMPR1

1

taonCMPR2

tconCMPR3

tbaon

2

tcon

tbon

taon

3

tbon

tcon

tcon

4

tbon

taon

tcon

5

taon

tbon

tbon

6

tcon

taon

Sector
Phase

 Figure 26: Table Assigning the Right Duty Cycle to the Right Motor Phase

Field Orientated Speed Controlled AC Induction Drive Software Implementation

34 Literature Number: BPRA076

The following picture shows an example of one vector which would be in sector 3
according to [6] notations.

T0/4 T6/2 T6/2 T0/4 T0/4 T6/4 T4/4 T0/4

V0 V6 V4 V7 V7 V6 V4 V0

T

t

t

t

PWM1

PWM3

PWM5

t

CMPR1

CMPR3

CMPR2

tcon

tbon

taon

 Figure 27: Sector 3 PWM Patterns and Duty Cycles

According to [6] the maximum phase voltage that can be used out of this inverter is:
V

VDC

3

310

3
179= ≅

Given that the base voltage of the motor used in this application is equal to 180V, the
above information shows the very high efficiency of the power conversion when the
maximum available voltage is used.

This Space Vector Modulation module requires 215 words of ROM, 17 words of RAM
and 1.69 MIPS.

3.13 Experimental Results

This chapter handles the results of the different drive operations. The motor has been
mounted on to a test bench with adjustable resistive torque. The test results are split
into two categories: operations where speed is smaller or equal to the nominal value
and operations where speed is higher than the nominal value.

As explained in a previous chapter, the flux reference (iSdref) in the normal speed range
has been set to 0.6 pu. Knowing that the pu phase current magnitude (i) must be

smaller than or equal to one and that i i iSdref Sqref= +2 2 , then iSqref may not be higher

than 0.8 pu. This torque reference limitation is integrated into the control software
using the iSqrefmax constant, that is set to 0ccdh (4.12 format). The following scope
pictures show, on one hand, the steady state operation at 1500rpm under nominal
load and, on the other hand, the transient operation from 100rpm to 1500rpm under
nominal load.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 35

 Figure 28: Steady State Operation under Nominal Conditions

In order to produce this steady state picture the motor has first been accelerated up to
the nominal speed without any resistive torque and, in a second step, it has been
loaded with the braking torque nominal value. Knowing that 1.25V represents a one in
pu model, then this picture shows that the motor runs at nominal speed (achieved
speed superimposed with speed reference) under nominal phase voltage with
nominal phase current.

 Figure 29: Transient Operation under Nominal Torque / Torque Limitation set to
0.8

This transient picture shows that the nominal operating point can not be achieved if
the braking torque is maintained constant and equal to its nominal value. This is due
to the limitations of the torque component In fact it has first been set so that the
maximum phase current is equal to the nominal value, but to achieve the desired
operating point with a quick mechanical time constant, the motor needs to get
transient currents higher than nominal current. The following scope picture shows that
simply increasing the torque component limitation can solve this transient trouble. In
this case the iSqrefmax has been set to 1.2 instead of 0.8.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

36 Literature Number: BPRA076

 Figure 30: Transient Operation under Nominal Torque / Torque Limit. set to 1.2

This shows that nominal operating point can be reached by this field orientated control
structure with a maximum transient phase current of 1.2 times the nominal current,
thereby minimizing the problems associated with drive overheating. Furthermore, the
transient duration under nominal load is very short as it is equal to 0.6 sec, which
confirms the predicted excellent dynamic behaviour of the field-orientated control.

The next scope picture shows the transient behaviour in the field weakening area.
The torque component limitation is equal to one. The speed reference changes from
2000 to 3000 rpm. The load torque is set to the maximum achievable value, 3000rpm.
Note that steady state behaviour has already been discussed in the chapter dedicated
to field weakening.

 Figure 31: Transient Operation in the Extend. Speed Range / Torque Limit. set to 1

Note that during the field-weakening transient, the flux reference (iSdref) decreases and
hence the torque component may be increased under the constraint

i iSdref Sqref
2 2 1+ ≤ . The software function that would allow new torque component

limitations relative to a decrease in the flux reference has not been implemented.

The following scope picture shows a speed reversion test from 1000rpm to -1000rpm
under nominal load.

Field Orientated Speed Controlled AC Induction Drive Software Implementation

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 37

 Figure 32: Speed Reversion from -1000rpm to 1000rpm under nominal load

Notice that the torque component reached its limitation at 100ms and that flux and
torque components are decoupled.

3.14 The control algorithm flow chart

The flow chart of the TIMER1 underflow Interrupt Service Routine (ISR containing the
complete FOC structure computation) is given below:

Field Orientated Speed Controlled AC Induction Drive Software Implementation

38 Literature Number: BPRA076

Start Control Routine
_c_int2

run?

Calculate speed?

(a,b,c)->(α,β)

Clarke Transformation

Ia,Ib Current
Sampling & Scaling

Calculate speed (n)

Speed regulator

Vsαref=0

Vsβref=0

Calulate sin(Teta_cm)
and cos(Teta_cm)

(α,β)->(d,q)

Park Transform

Current Model

Field Weakening

q-current regulator

d-current regulator

(d,q)->(α,β)

Inv Park Transformation

End Control Routine

SVPWM

YES

NO

YES

NO

 Figure 33: FOC Implementation Flowchart

User Interface

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 39

4. User Interface
An exhaustive explanation of the user interface implementation is beyond the scope
of this document. This chapter simply presents the screen picture that has been used
as user interface to develop and improve this software. The corresponding Quick
Basic program and the assembly communication software are both included for
information purposes. One can be found in the appendix file, while the other is directly
included in the FOC algorithm. Below is a copy of the screen picture:

 Figure 34: Communication Program. Screen picture

5. Conclusion
This document has introduced the Field Orientated Controlled AC induction drive
based on the DSP Controller TMS320F240. We have demonstrated that the real time
processing capability of this motor control dedicated device allows for a highly reliable
and effective drive. In fact, this document has explained not only the drive reliability
and efficiency, but the cost efficiency of the motor and drive, the high torque at zero
speed, the speed variation capability, the extended speed range, the direct torque
and flux control and the excellent dynamic behaviour. These results have been
achieved using 7.7 MIPS from the 20 MIPS available and with a code size no greater
than 1K word. 320 words (out of a possible 544) of data memory are enough to
implement this control.

The major objective of this report was to provide the reader with the tools to enable
him to develop his own AC induction drive in a very short time. To achieve this,
detailed explanations, the results of various experiments, implementation tips and the
background theory to these processes have all been fully explained. In fact, the
modular structure of the presentation and the guidelines for correctly adapting
software allow the reader to quickly grasp the different aspects of this FOC structure
and be able to adapt this software to the required specification.

References

40 Literature Number: BPRA076

References

[1] F. Parasiliti, “Appunti delle lezioni di Azionamenti Elettrici: Controllo Vettoriale ad
Orientamento di Campo”, Università degli Studi di L’Aquila

[2] R. Di Gabriele, F. Parasiliti, M. Tursini, “Digital Field Oriented Control for
induction motors: implementation and experimental results”, Universities Power
Engineering Conference (UPEC’97)

[3] Riccardo Di Gabriele, “Controllo vettoriale di velocità di un motore asincrono
mediante il Filtro di Kalman Esteso”, Tesi di Laurea, Università degli Studi di
L’Aquila, Anno Accademico 1996-97

[4] Roberto Petrella, “Progettazione e sviluppo di un sistema digitale basato su DSP
e PLD per applicazione negli azionamenti elettrici”, Tesi di Laurea, Università
degli Studi di L’Aquila, Anno Accademico 1995-96

[5] Angela Del Gobbo, “Controllo Vettoriale digitale di un motore asincrono:
strategie di stima e dispositivi di calcolo a confronto”, Tesi di Laurea, Università
degli Studi di L’Aquila, Anno Accademico 1994-95

[6] Texas Instruments, “Field Orientated Control of Three Phase AC-motors”,
Literature number: BPRA073, December 1997

[7] A. Ometto, “Modulation Techniques”, Università degli Studi di L’Aquila

[8] J.-P. Favre, “Correction de la compsante intégrale de régulateurs digitaux en cas
de limitation”, EPF- Lausanne

[9] A. Ometto, “Modulation Techniques”, Università degli Studi di L’Aquila

[10]Werner Leonard, “Control of Electrical Drives”, 2nd Completely Revised and
Enlarged Edition, Springer, ISBN 3-540-59380-2

[11]D. W. Novotny and T. A. Lipo, “Vector Control and Dynamics of AC Drives”,
Oxford Science Publications, ISBN 0-19-856439-2

[12]Texas Instruments, “DSP Solution for AC Induction Motor”, Literature number:
BPRA043, November 1996

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 41

Appendix A - TMS320F240 FOC Software

* TEXAS INSTRUMENTS *
* Sensored Speed Field Orientated Control of an AC *
* induction motor *

* ASYNCHRONOUS Motor (LAFERT) *
* File Name : foc.ASM *
* USER INTERFACE program : foc.BAS *
* ia, ib sampled currents, on line current model, FOC *
* Author : Riccardo Di Gabriele *

.include ".\c240app.h"

.mmregs

* Start

.globl _c_int0 ;set _c_int0 as global symbol

.sect "vectors"
b _c_int0 ;reset interrupt handler

_c_int1 b _c_int1 ;
b _c_int2 ;PWM interrupt handler

_c_int3 b _c_int3 ;
_c_int4 b _c_int4 ;
_c_int5 b _c_int5 ;
_c_int6 b _c_int6 ;

.space 16*6 ;reserve 6 words in interrupt table

* Auxiliary Register used
* ar7 pointer for context save stack
* ar5 used in the interruption c_int2

stack .usect "blockb2",15 ;space for Status Register
;context save in Page 0

dac_val .usect "blockb2",5 ;space for dac values in
;Page 0

*** Motor LAFERT, ST 61 L4 ***
*** Numeric formats: all 4.12 fixed point format twos
*** complement for negative values (4 integer & sign + 12
*** fractional) except otherwise specified
* Currents: 1000h (4.12)= 4.1 A = Ibase=1.41*In0=1.41*2.9
* Voltages: 1000h (4.12)= 179.6 V = Vbase=1.41*Vn0=1.41*127
* Angles : [0;ffffh] = [0;360] degrees
* Speed : [0;1000h] (4.12) = [0;1500] rpm
*** END Numeric formats

* Look-up table .includes
* N.B. it includes 256 elements

.sect "table"

sintab .include sine.tab ;sine wave look-up
;table for sine and
;cosinewaves generation
;generated by the BASIC
;program "SINTAB.BAS"
;4.12 format

Appendix A - TMS320F240 FOC Software

42 Literature Number: BPRA076

*** END look-up table .includes

* Variables and constants initializations

.data

*** current sampling constants
;ADCIN0 (ia current sampling)
;ADCIN8 (ib current sampling)
Kcurrent .word 1383h ;8.8 format (19.51) sampled

;currents normalization constant
Kr .set 0eh ;Kr=T/Tr=3.3117*10-3 (4.12 f)
Kt .set 1b0h ;Kt=1/(Tr*wBase)=105.42*10-3 (f 4.12)
K .set 148h ;K=65536/200, the K constant

;must take the rotor flux
;position from 0 to 65535 in
;200 sample times

*** axis transformation constants
SQRT3inv .set 093dh ;1/SQRT(3) 4.12 format
SQRT32 .set 0ddbh ;SQRT(3)/2 4.12 format
SR8BIT .word 100h ;used to shift bits 8 right

*** PWM modulation constant
PWMPRD .set 1000 ;PWM Period=2*1000 ->

;Tc=2*1000*50ns=100us (50ns resolution)

*** PI current regulators parameters
Ki .word 0100h ;4.12 format=0.0625
Kpi .word 01000h ;4.12 format=1
Kcor .word 0100h ;4.12 format=0.0625

*** PI speed regulators parameters
Kin .word 35h ;4.12 format=0.012939453
Kpin .word 482bh ;4.12 format=4.510498047
Kcorn .word 0bh ;4.12 format=0.002685546

*** Field Weakening polynomial coefficients
p3 .word -5 ;8.8 format
p2 .word 56
p1 .word -209
p0 .word 300

*** vSqref and VdSr limitations
Vmin .set 0ec00h ;4.12 format=-1.25 pu
Vmax .set 1400h ;4.12 format=1.25 pu

*** iSqref limitations
Isqrefmin .set -3277 ;4.12 format=-0.8 pu
Isqrefmax .set 3277 ;4.12 format=0.8 pu

*** Speed calculation constants
Kspeed .set 0da7h ;this constant is needed only

;with encoder it is used to
;convert encoder pulses to a speed value.
;8.8 format = 13.65

SPEEDSTEP .set 30 ;speed samplig period =
;current sampling period *
;SPEEDSTEP

ctrl_n ;label control variable page
.bss tmp,1 ;temporary variable (to use in ISR only !!!)
.bss tmp1,1 ;temporary variable
.bss n_ref8_8,1 ;8.8 format reference speed

;for Field Weakening behavior

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 43

.bss option,1 ;virtual menu option number

.bss daout,1 ;address of the variable to
;send to the DACs

.bss daouttmp,1 ;value to send to the DACs

*** DAC displaying table starts here
.bss ia,1 ;phase current ia
.bss ib,1 ;phase current ib
.bss ic,1 ;phase current ic
.bss t1,1 ;SVPWM T1 (see SV PWM references for details)
.bss t2,1 ;SVPWM T2 (see SV PWM references for details)
.bss Vref1,1 ;variable for sector calculation
.bss Vref2,1 ;variable for sector calculation
.bss Vref3,1 ;variable for sector calculation
.bss VDC,1 ;DC Bus Voltage
.bss taon,1 ;PWM commutation instant phase 1
.bss tbon,1 ;PWM commutation instant phase 2
.bss tcon,1 ;PWM commutation instant phase 3
.bss iSalfa,1 ;alfa-axis current
.bss iSbeta,1 ;beta-axis current
.bss vSal_ref,1 ;alfa-axis reference voltage
.bss vSbe_ref,1 ;beta-axis reference voltage
.bss iSdref,1 ;d-axis reference current
.bss iSqref,1 ;q-axis reference current
.bss iSd,1 ;d-axis current
.bss iSq,1 ;q-axis current
.bss vSdref,1 ;d-axis reference voltage
.bss vSqref,1 ;q-axis reference voltage
.bss epiq,1 ;q-axis current regulator error
.bss epid,1 ;d-axis current regulator error
.bss xiq,1 ;q-axis current regulator integral component
.bss xid,1 ;d-axis current regulator integral component
.bss n,1 ;speed
.bss n_ref,1 ;speed reference
.bss epin,1 ;speed error (used in speed regulator)
.bss xin,1 ;speed regulator integral component
.bss X,1 ;SVPWM variable
.bss Y,1 ;SVPWM variable
.bss Z,1 ;SVPWM variable
.bss sector,1 ;SVPWM sector
.bss Teta_cm1,1 ;rotor flux position with current

;model used only in the
;communication program

.bss sinTeta_cm,1 ;sine rotor flux position with
;current model, 4.12 f

.bss cosTeta_cm,1 ;cosine rotor flux position with
;current model, 4.12 f

.bss i_mr,1 ;magnetizing current (used only in
;the current model), 4.12 f

.bss fs,1 ;rotor flux speed 4.12 f
*** END DAC displaying table

.bss run,1 ;initialization flag

.bss Teta_cm,1 ;real rotor flux position, output
;of the current model

.bss serialtmp,1 ;serial communication temporary
;variable

.bss da1,1 ;DAC displaying table offset for DAC1

.bss da2,1 ;DAC displaying table offset for DAC2

.bss da3,1 ;DAC displaying table offset for DAC3

.bss da4,1 ;DAC displaying table offset for DAC4

.bss VDCinvT,1 ;VDCinv*(T/2) (used in SVPWM)

.bss tetaincr,1 ;variable used in current model

.bss Index,1 ;pointer used to access sine look-up table
* PI regulators variable

.bss upi,1 ;PI regulators (current and speed) output

.bss elpi,1 ;PI regulators (current and speed)
;limitation error

Appendix A - TMS320F240 FOC Software

44 Literature Number: BPRA076

.bss encincr,1 ;encoder pulses increment between
 ;two consecutive Sampling periods
.bss speedtmp,1 ;used to accumulate encoder pulses

;increments (to calculate the
;speed each speed sampling period)

.bss speedstep,1 ;sampling periods down counter
;used to define speed sampling
;period

*** END Variables and constants initializations

.text ;link in "text section"

*** *
* _c_int2 ISR *
* synchronization of the control algorithm with the PWM *
* underflow interrupt *
*** *
_c_int2:

* Context Saving

larp ar7 ;context save
mar *-
sst #1,*- ;status register 1
sst #0,*- ;status register 0
sach *- ;Accu. low saved for context save
sacl *- ;Accu. high saved

* END Context Saving *
mar *,ar5 ;used later for DACs output

* Control ISR
* Description: Control Algorithm ISR
* Last Update:17 november 1997

* initialization phase

ldp #ctrl_n ;control variable page
lacc run
bcnd noinit,NEQ
lacc #0
sacl vSal_ref
sacl vSbe_ref
b init

* END initialization phase

noinit

* Current sampling - AD conversions
* N.B. we will have to take only 10 bit (LSB)

ldp #DP_PF1
splk #1801h,ADC_CNTL1 ;ia and ib conversion start

;ADCIN0 selected for ia A/D1
;ADCIN8 selected for ib A/D2

conversion
bit ADC_CNTL1,8
bcnd conversion,tc ;wait approximatly 6us
lacc ADC_FIFO1,10 ;10.6 format
ldp #ctrl_n ;control variable page
sach tmp
lacl tmp
and #3ffh

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 45

sub #512 ;then we have to subtract the offset (2.5V) to have
;positive and negative values of the sampled current

sacl tmp
spm 3 ;PM=11, 6 right shift after multiplication
lt tmp
mpy Kcurrent
pac ;
sfr
sfr
sacl ia ;PM=11, +2 sfr= 8 right shift
spm 0
sub #112 ;then we subtract a DC offset

;(that should be zero, but it isn't)

sacl ia ;sampled current ia, 4.12 format
ldp #DP_PF1
lacc ADC_FIFO2,10
ldp #ctrl_n ;control variable page
sach tmp
lacl tmp
and #3ffh
sub #512
sacl tmp
spm 3
lt tmp
mpy Kcurrent
pac
sfr
sfr ;PM=11, +2 sfr= 8 right shift
add #-80 ;then we subtract a DC offset

;(that should be zero, but it isn't)
sacl ib
spm 0 ;PM=00

* END Current sampling - AD conversions

* Clarke transformation
* (a,b) -> (alfa,beta)
* iSalfa = ia
* iSbeta = (2 * ib + ia) / sqrt(3)

lacc ia
sacl iSalfa ;iSalfa 4.12 format
add ib
neg
sacl ic

lacc ib,1 ;iSbeta = (2 * ib + ia) / sqrt(3)
add ia
sacl tmp
lt tmp
mpy #SQRT3inv ;SQRT3inv = (1 / sqrt(3)) = 093dh

;4.12 format = 0.577350269
pac
sach iSbeta,4 ;iSbeta 4.12 format

* END Clarke transformation

* Measured speed and control

*** encoder pulses reading

ldp #DP_EV
lacc T3CNT ;we read the encoder pulses
splk #0000h,T3CNT
ldp #ctrl_n ;control variable page

Appendix A - TMS320F240 FOC Software

46 Literature Number: BPRA076

sacl encincr
*** END Encoder pulses reading

* Calculate speed and update reference speed variables

lacc speedstep ;are we in speed control loop
;(SPEEDSTEP times current control loop)

sub #1
sacl speedstep
bcnd nocalc,GT ;if we aren't, skip speed calculation

**
* Speed calculation from encoder pulses
**

spm 3 ;PM=11, 6 right shift after multiplication
lt speedtmp ;multiply encoder pulses by Kspeed

;(8.8 format constant)
;to have the value of speed

mpy #Kspeed
pac
sfr
sfr ;PM=11, +2 sfr= 8 right shift
sacl n
lacc #0 ;zero speedtmp for next calculation
sacl speedtmp
lacc #SPEEDSTEP ;restore speedstep to the value

;SPEEDSTEP
sacl speedstep ;for next speed control loop
spm 0 ;PM=00, no shift after multiplication

**
* END Speed calculation from encoder pulses
**

* Speed regulator with integral component correction

lacc n_ref
sub n
sacl epin ;epin=n_ref-n, 4.12 format
lacc xin,12
lt epin
mpy Kpin
apac
sach upi,4 ;upi=xin+epin*Kpin, 4.12 format

;here we start to saturate
bit upi,0
bcnd upimagzeros,NTC ;If value >0 we branch
lacc #Isqrefmin ;negative saturation
sub upi
bcnd neg_sat,GT ;if upi<ISqrefmin then branch to saturate
lacc upi ;value of upi is valid
b limiters

neg_sat
lacc #Isqrefmin ;set acc to -ve saturated value
b limiters

upimagzeros ;Value is positive
lacc #Isqrefmax ;positive saturation
sub upi
bcnd pos_sat,LT ;if upi>ISqrefmax then branch to saturate
lacc upi ;value of upi valid
b limiters

pos_sat
lacc #Isqrefmax ;set acc to +ve saturated value

limiters
sacl iSqref ;Store the acc as reference value

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 47

sub upi
sacl elpi ;elpi=iSqref-upi, 4.12 format

lt elpi ;if there is no saturation elpi=0
mpy Kcorn
pac
lt epin
mpy Kin
apac
add xin,12
sach xin,4 ;xin=xin+epin*Kin+elpi*Kcorn, 4.12 format

* END Speed regulator with integral component correction

nocalc ;branch here if we don't have to calculate the speed
lacc speedtmp ;use the actual encoder increment to ;update the

;increments accumulator used to calculate the speed
add encincr
sacl speedtmp

* END Measured speed and control

**
* sinTeta_cm, cosTeta_cm calculation
**

mar *,ar5
lt Teta_cm ;current model rotor flux position
mpyu SR8BIT
pac
sach Index
lacl Index
and #0ffh
add #sintab
sacl tmp
lar ar5,tmp
lacl *
sacl sinTeta_cm ;sine Teta_cm value, 4.12 format

lacl Index ;The same for Cos ...
;cos(teta)=sin(teta+90ø)

add #40h ;90ø = 40h elements of the table
and #0ffh
add #sintab
sacl tmp
lar ar5,tmp
lacc *
sacl cosTeta_cm ;cosine Teta_cm value, 4.12 format

**
* END sinTeta_cm, cosTeta_cm calculation
**

* Park transformation
* (alfa, beta)->(d,q)
* iSd=iSalfa*cos(Teta_cm)+iSbeta*sin(Teta_cm)
* iSq=-iSalfa*sin(Teta_cm)+iSbeta*cos(Teta_cm)

lt iSbeta
mpy sinTeta_cm
lta iSalfa
mpy cosTeta_cm
mpya sinTeta_cm
sach iSd,4 ;iSd 4.12 format
lacc #0
lt iSbeta
mpys cosTeta_cm
apac

Appendix A - TMS320F240 FOC Software

48 Literature Number: BPRA076

sach iSq,4 ;iSq 4.12 format

* END Park transformation

* Current Model

lacc iSd
sub i_mr
sacl tmp
lt tmp
mpy #Kr
pac
sach tmp,4
lacc tmp
add i_mr
sacl i_mr ;i_mr=i_mr+Kr*(iSd-i_mr), 4.12 f
bcnd i_mrnotzero,NEQ
lacc #0
sacl tmp ;if i_mr=0 then tmp=iSq/i_mr=0
b i_mrzero

i_mrnotzero
*** division (iSq/i_mr)

lacc i_mr
bcnd i_mrzero,EQ
sacl tmp1
lacc iSq
abs
sacl tmp
lacc tmp,12
rpt #15
subc tmp1
sacl tmp ;tmp=iSq/i_mr
lacc iSq
bcnd iSqpos,GT
lacc tmp
neg
sacl tmp ;tmp=iSq/i_mr, 4.12 format

iSqpos
i_mrzero
*** END division ***

lt tmp
mpy #Kt
pac
sach tmp,4 ;slip frequency, 4.12 format
lacc tmp ;load tmp in low ACC
add n
sacl fs ;rotor flux speed, 4.12 format,

;fs=n+Kt*(iSq/i_mr)
*** rotor flux position calculation ***

lacc fs
abs
sacl tmp
lt tmp
mpy #K
pac
sach tetaincr,4
bit fs,0
bcnd fs_neg,TC
lacl tetaincr
adds Teta_cm
sacl Teta_cm
b fs_pos

fs_neg
lacl Teta_cm
subs tetaincr
sacl Teta_cm

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 49

;Teta_cm=Teta_cm+K*fs=Teta_cm+tetaincr
;(0;360)<->(0;65535)

fs_pos
rpt #3
sfr
sacl Teta_cm1 ;(0;360)<->(0;4096), this variable

;is used only for the visualization

* END Current Model

* Field Weakening function
* input:n_ref, output iSdref 4.12 format

spm 2 ;PM=10, four left shift after multiplication
lacc n_ref
abs ;we consider absolute value of speed reference
rpt #3
sfr
sacl n_ref8_8 ;speed reference 8.8f
sub #100h
bcnd noFieldWeakening,LEQ
lacc p0,12
lt n_ref8_8
mpy p1
apac
sach tmp,4 ;tmp=p0+p1*n_ref
sqra n_ref8_8
pac
sach tmp1,4
lacc tmp,12
lt tmp1 ;tmp1=n_ref^2
mpy p2
apac
sach tmp,4 ;tmp=p0+p1*n_ref+p2*(n_ref^2)
lt tmp1
mpy n_ref8_8
pac
sach tmp1,4 ;tmp1=n_ref^3
lacc tmp,12
lt tmp1
mpy p3
apac
sach tmp,4 ;tmp=p0+p1*n_ref+p2*(n_ref^2)+p3*(n_ref^3)
lacc tmp,4 ;iSdref 8.8 f
sacl iSdref ;iSdref 4.12 f with Field Weakening
b endFW

noFieldWeakening
lacc #2458 ;iSdref=0.6 pu
sacl iSdref ;iSdref 4.12 f without Field Weakening

endFW
spm 0 ;PM=0

* END Field Weakening function

**
* q-axis current regulator with integral component * correction
* (iSq,iSqref)->(vSqref)
**

lacc iSqref
sub iSq
sacl epiq ;epiq=iSqref-iSq, 4.12 format
lacc xiq,12
lt epiq
mpy Kpi
apac

Appendix A - TMS320F240 FOC Software

50 Literature Number: BPRA076

sach upi,4 ;upi=xiq+epiq*Kpi, 4.12 format

bit upi,0
bcnd upimagzeroq,NTC
lacc #Vmin
sub upi
bcnd neg_satq,GT ;if upi<Vmin branch to saturate
lacc upi ;value of upi is valid
b limiterq

neg_satq
lacc #Vmin ;set ACC to neg saturation
b limiterq

upimagzeroq ;Value was positive
lacc #Vmax
sub upi
bcnd pos_satq,LT ;if upi>Vmax branch to saturate
lacc upi ;value of upi is valid
b limiterq

pos_satq
lacc #Vmax ;set ACC to pos saturation

limiterq
sacl vSqref ;Save ACC as reference value
sub upi
sacl elpi ;elpi=vSqref-upi, 4.12 format
lt elpi
mpy Kcor ;change to dma
pac
lt epiq
mpy Ki ;change to dma
apac
add xiq,12
sach xiq,4 ;xiq=xiq+epiq*Ki+elpi*Kcor, 4.12 f

* END q-axis regulator with integral component correction

* d-axis current regulator with integral component
* correction
* (iSd,iSdref)->(vSdref)

lacc iSdref
sub iSd
sacl epid ;epid=iSdref-iSd, 4.12 format
lacc xid,12
lt epid
mpy Kpi
apac
sach upi,4 ;upi=xid+epid*Kpi, 4.12 format

bit upi,0
bcnd upimagzerod,NTC
lacc #Vmin
sub upi
bcnd neg_satd,GT ;if upi<Vmin branch to saturate
lacc upi ;upi value valid
b limiterd

neg_satd
lacc #Vmin ;set acc to neg saturation
b limiterd

upimagzerod ;value was positive
lacc #Vmax
sub upi
bcnd pos_satd,LT ;if upi>Vmax branch to saturate
lacc upi ;upi value valid
b limiterd

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 51

pos_satd
lacc #Vmax ;set acc to pos saturation

limiterd
sacl vSdref ;store ACC as reference value
sub upi
sacl elpi ;elpi=vSdref-upi, 4.12 format
lt elpi
mpy Kcor
pac
lt epid
mpy Ki
apac
add xid,12
sach xid,4 ;xid=xid+epid*Ki+elpi*Kcor, 4.12 f

* END d-axis regulator with integral component correction

* Inverse Park transformation
* (d,q) -> (alfa,beta)
* vSbe_ref = vSqref * cos(Teta_cm)+ vSdref * sin(Teta_cm)
* vSal_ref =-vSqref * sin(Teta_cm) + vSdref * cos(Teta_cm)

lacc #0
lt vSdref
mpy sinTeta_cm
lta vSqref
mpy cosTeta_cm
mpya sinTeta_cm
sach vSbe_ref,4

;vSbe_ref=vSqref*cosTeta_cm+vSdref*sinTeta_cm
lacc #0
lt vSdref
mpys cosTeta_cm
apac
sach vSal_ref,4

;vSal_ref=vSdref*cosTeta_cm-vSqref*sinTeta_cm

* END Inverse Park transformation

init

* SPACE VECTOR Pulse Width Modulation

*** sector calculation***

**
* Vref1 = vSbe_ref
* Vref2 = (-vSbe_ref + sqrt(3) * vSal_ref) / 2
* Vref3 = (-vSbe_ref - sqrt(3) * vSal_ref) / 2
**

lt vSal_ref
mpy #SQRT32
pac
sub vSbe_ref,11
sach Vref2,4 ;4.12 format
pac
neg
sub vSbe_ref,11
sach Vref3,4 ;4.12 format
lacl vSbe_ref
sacl Vref1 ;4.12 format

**
* END reference voltage for sector calculation

Appendix A - TMS320F240 FOC Software

52 Literature Number: BPRA076

**
lt VDCinvT
mpy #SQRT32
pac
sach tmp,4 ;tmp=VDCinvT*SQRT32, 4.12 format
lt tmp
mpy vSbe_ref
pac
sach X,4 ;tmp*vSbe_ref, 4.12 format
lacc X ;ACC = vSbe_ref*VDCinvT*SQRT32
sacl tmp1 ;tmp1=vSbe_ref*VDCinvT*SQRT32, 4.12 format
sacl X,1 ;X=(2*SQRT32*vSbe_ref*VDCinvT), 4.12 format
lt VDCinvT
splk #1800h,tmp ;3/2, 4.12 format
mpy tmp ;implement mpy #01800h
pac
sach tmp,4 ;tmp=(3/2)*VDCinvT, 4.12 format
lt tmp
mpy vSal_ref
pac
sach tmp,4 ;tmp=(3/2)*VDCinvT*vSal_ref, 4.12 format
lacc tmp ;reload ACC with

;(3/2)*VDCinvT*vSal_ref
add tmp1 ;tmp1=vSbe_ref*VDCinvT*SQRT32,

;4.12 format
sacl Y ;Y=SQRT32*VDCinvT*vSbe_ref+(3/2)*VDCinvT*vSal_ref,

;4.12 format
sub tmp,1
sacl Z ;Z=SQRT32*VDCinvT*vSbe_ref-(3/2)*VDCinvT*vSal_ref,

;4.12 format
*** 60 degrees sector determination

lacl #0
sacl sector
lacc Vref1
bcnd Vref1_neg,LEQ ;If Vref1<0 do not set bit 1 of sector
lacc sector
or #1
sacl sector

Vref1_neg
lacc Vref2
bcnd Vref2_neg,LEQ ;If Vref2<0 do not set bit 2 of sector
lacc sector
or #2
sacl sector

Vref2_neg
lacc Vref3
bcnd Vref3_neg,LEQ ;If Vref3<0 do not set bit 3 of sector
lacc sector
or #4
sacl sector

Vref3_neg
*** END 60 degrees sector determination

*** T1 and T2 (= t1 and t2) calculation depending on the
*** sector number

lacl sector
sub #1
bcnd no1,NEQ
lacc Z
sacl t1
lacc Y
sacl t2
b t1t2out

no1 lacl sector
sub #2
bcnd no2,NEQ
lacc Y

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 53

sacl t1
lacc X
neg
sacl t2
b t1t2out

no2 lacl sector
sub #3
bcnd no3,NEQ
lacc Z
neg
sacl t1
lacc X
sacl t2
b t1t2out

no3 lacl sector
sub #4
bcnd no4,NEQ
lacc X
neg
sacl t1
lacc Z
sacl t2
b t1t2out

no4 lacl sector
sub #5
bcnd no5,NEQ
lacc X
sacl t1
lacc Y
neg
sacl t2
b t1t2out

no5 lacc Y
neg
sacl t1
lacc Z
neg
sacl t2

t1t2out
*** END t1 and t2 calculation

lacc t1 ;if t1+t2>PWMPRD we have to saturate t1 and t2
add t2
sacl tmp
sub #PWMPRD
bcnd nosaturation,LT,EQ

*** t1 and t2 saturation
lacc #PWMPRD,15 ;divide PWMPRD by (t1+t2)
rpt #15
subc tmp
sacl tmp
lt tmp ;calculate saturate values of t1 and t2
mpy t1 ;t1 (saturated)=t1*(PWMPRD/(t1+t2))
pac
sach t1,1
mpy t2 ;t2 (saturated)=t2*(PWMPRD/(t1+t2))
pac
sach t2,1

*** END t1 and t2 saturation

nosaturation
*** taon,tbon and tcon calculation

lacc #PWMPRD ;calculate the commutation
;instants taon, tbon and tcon

sub t1 ;of the 3 PWM channels
sub t2 ;taon=(PWMPRD-t1-t2)/2
sfr

Appendix A - TMS320F240 FOC Software

54 Literature Number: BPRA076

sacl taon
add t1 ;tbon=taon+t1
sacl tbon
add t2 ;tcon=tbon+t2
sacl tcon

*** END taon,tbon and tcon calculation

*** sector switching
lacl sector ;depending on the sector number we have
sub #1 ;to switch the calculated taon, tbon and tcon
bcnd nosect1,NEQ ;to the correct PWM channel
bldd tbon,#CMPR1 ;sector 1
bldd taon,#CMPR2
bldd tcon,#CMPR3
b dacout

nosect1
lacl sector
sub #2
bcnd nosect2,NEQ
bldd taon,#CMPR1 ;sector 2
bldd tcon,#CMPR2
bldd tbon,#CMPR3
b dacout

nosect2
lacl sector
sub #3
bcnd nosect3,NEQ
bldd taon,#CMPR1 ;sector 3
bldd tbon,#CMPR2
bldd tcon,#CMPR3
b dacout

nosect3
lacl sector
sub #4
bcnd nosect4,NEQ
bldd tcon,#CMPR1 ;sector 4
bldd tbon,#CMPR2
bldd taon,#CMPR3
b dacout

nosect4
lacl sector
sub #5
bcnd nosect5,NEQ
bldd tcon,#CMPR1 ;sector 5
bldd taon,#CMPR2
bldd tbon,#CMPR3
b dacout

nosect5
bldd tbon,#CMPR1 ;sector 6
bldd tcon,#CMPR2
bldd taon,#CMPR3

*** END sector switching

* END SPACE VECTOR Pulse Width Modulation

dacout
**
* DAC output of channels 'da1','da2','da3','da4'
* Output on 12 bit Digital analog Converter
* 5V equivalent to FFFh
**

lacc sector,7 ;scale sector by 2^7 to have good displaying
sacl sector

*** DAC out channel 'da1'
lacc #ia ;get the address of the first elements
add da1 ;add the selected output variable

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 55

;offset 'da1' sent by the terminal
sacl daout ;now daout contains the address of

;the variable to send to DAC1
lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out
;the following 3 instructions are
;required to adapt the numeric
;format to the DAC resolution

sfr ;we have 10 bit DAC, we want to
;have the number 2000h = 5 Volt

sfr
add #800h
sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DAC0_VAL

*** END DAC out channel 'da1'

*** DAC out channel 'da2'
lacc #ia ;get the address of the first elements
add da2 ;add the selected output variable

;offset 'da1' sent by the terminal
sacl daout ;now daout contains the address of

;the variable to send to DAC1
lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the
;value to send out
;the following 3 instructions are
;required to adapt the numeric
;format to the DAC resolution

sfr ;we have 10 bit DAC, we want to
;have the number 2000h = 5 Volt

sfr
add #800h
sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DAC1_VAL

*** END DAC out channel 'da2'

*** DAC out channel 'da3'
lacc #ia ;get the address of the first elements
add da3 ;add the selected output variable

;offset 'da1' sent by the terminal
sacl daout ;now daout contains the address of

;the variable to send to DAC1
lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out
;the following 3 instructions are
;required to adapt the numeric
;format to the DAC resolution

sfr ;we have 10 bit DAC, we want to have
;the number 2000h = 5 Volt

sfr
add #800h
sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DAC2_VAL

*** END DAC out channel 'da3'

*** DAC out channel 'da4'
lacc #ia ;get the address of the first elements
add da4 ;add the selected output variable

;offset 'da1' sent by the terminal
sacl daout ;now daout contains the address of

;the variable to send to DAC1
lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out

Appendix A - TMS320F240 FOC Software

56 Literature Number: BPRA076

;the following 3 instructions are
;required to adapt the numeric
;format to the DAC resolution

sfr ;we have 10 bit DAC, we want to have
;the number 2000h = 5 Volt

sfr
add #800h
sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DAC3_VAL

*** END DAC out channel 'da4'

OUT tmp,DAC_VAL ;start convertion

ldp #IFRA>>7
splk #200h,IFRA ;Clear all flags, may be

;change with only T1 underflow int.

* Context restore and Return

larp ar7
mar *+
lacl *+ ;Accu. restored for context restore
add *+,16
lst #0,*+
lst #1,*+

clrc INTM
ret

* END Context Restore and Return

* END _c_int2 ISR
* synchronization of the control algorithm with the PWM
* underflow interrupt

_c_int0:

* Board general settings

clrc xf

**
* Function to disable the watchdog timer
**

ldp #DP_PF1
splk #006Fh, WD_CNTL
splk #05555h, WD_KEY
splk #0AAAAh, WD_KEY
splk #006Fh, WD_CNTL

* Function to initialise the Event Manager
* GPTimer 1 => Full PWM
* Enable Timer 1==0 interrupt on INT2
* All other pins are IO

;Set up SYSCLK and PLL for C24 EVM with 10MHz ;External Clk

ldp #DP_PF1
splk #00000010b,CKCR0 ;PLL disabled

; LPM0
;ACLK enabled
;SYSCLK 5MHz

splk #10110001b,CKCR1 ;10MHz clk in for ACLK
;Do not divide PLL
;PLL ratio x2

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 57

splk #10000011b,CKCR0 ;PLL enabled
;LPM0
;ACLK enabled
;SYSCLK 10MHz PLL x2
;Set up CLKOUT to be SYSCLK

splk #40C0h,SYSCR
;Clear all reset variables

lacc SYSSR
and #69FFh
sacl SYSSR
;Set up zero wait states for external memory
lacc #0004h
sacl *
out *,WSGR

;Clear All EV Registers
zac
ldp #DP_EV
sacl GPTCON
sacl T1CNT
sacl T1CMP
sacl T1PER
sacl T1CON
sacl T2CNT
sacl T2CMP
sacl T2PER
sacl T2CON
sacl T3CNT
sacl T3CMP
sacl T3PER
sacl T3CON
sacl COMCON
sacl ACTR
sacl SACTR
sacl DBTCON
sacl CMPR1
sacl CMPR2
sacl CMPR3
sacl SCMPR1
sacl SCMPR2
sacl SCMPR3
sacl CAPCON
sacl CAPFIFO
sacl FIFO1
sacl FIFO2
sacl FIFO3
sacl FIFO4

;Initialise PWM ; No software dead-band
splk #666h,ACTR ;Bits 15-12 not used, no space vector

;PWM compare actions
;PWM6/PWM5 -Active Low/Active High
;PWM4/PWM3 -Active Low/Active High
;PWM2/PWM1 -Active Low/Active High

splk #100,CMPR1
splk #200,CMPR2
splk #300,CMPR3
splk #0207h,COMCON ;FIRST enable PWM operation

;Reload Full Compare when T1CNT=0
;Disable Space Vector
;Reload Full Compare Action when T1CNT=0
;Enable Full Compare Outputs
;Disable Simple Compare Outputs
;Full Compare Units in PWM Mode

splk #8207h,COMCON ;THEN enable Compare operation
splk #PWMPRD,T1PER ;Set T1 period
splk #0,T1CNT

Appendix A - TMS320F240 FOC Software

58 Literature Number: BPRA076

splk #0A800h,T1CON ;Ignore Emulation suspend
;Cont Up/Down Mode
;x/1 prescalar
;Use own TENABLE
;Disable Timer,enable later
;Internal Clock Source
;Reload Compare Register when T1CNT=0
;Disable Timer Compare operation
;Enable Timer 1

lacc T1CON
or #40h
sacl T1CON

* PWM Channel enable
* 74HC541 chip enable connected to IOPC3 of Digital
* input/output

;Configure IO\function MUXing of pins
ldp #DP_PF2 ;Enable Power Security Function
splk #000Fh,OPCRA ;Ports A/B all IO except ADCs
splk #00F9h,OPCRB ;Port C as non IO function except
;IOPC2&3
splk #0FF08h,PCDATDIR ;bit IOPC3

*** END: PWM enable

* Initialize ar7 as the stack for context save
* space reserved: DARAM B2 60h-80h (page 0)

lar ar7,#79h

* Incremental encoder initialization
* Capture for Incremental encoder correction with Xint2

ldp #DP_EV
splk #0000h,T3CNT ;configure counter register
splk #00FFh,T3PER ;configure period register
splk #9870h,T3CON ;configure for QEP and enable Timer T3
splk #0E2F0h,CAPCON ;T3 is selected as Time base for QEP

*** END encoder/capture initialization

* A/D initialization

ldp #DP_PF1
splk #0003h,ADC_CNTL2 ;prescaler set for a 10MHz oscillator

*** END A/D initialization

* Variables initialization

ldp #ctrl_n ;control variable page
zac
sacl run
sacl Index
sacl xid
sacl xiq
sacl xin
sacl upi
sacl elpi
sacl Vref1
sacl Vref2
sacl Vref3
sacl da1
splk #1b9dh,VDC ;The DC voltage is 310V

;Vdc=1.726 in 4.12 with a Vbase=179.6V

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 59

splk #243h,VDCinvT ;T/(Vdc*2) or PWMPRD/VDC=579
;rescaled by 4.12

lacc #1
sacl da2
lacc #2
sacl da3
lacc #3
sacl da4

setc OVM
spm 0 ;no shift after multiplication
setc sxm ;sign extension mode

* END Variables initialization

* Enable Interrupts

;Clear EV IFR and IMR regs
ldp #DP_EV
splk #07FFh,IFRA
splk #00FFh,IFRB
splk #000Fh,IFRC

;Enable T1 Underflow Int
splk #0200h,IMRA ;PDPINT is disabled, with 0201h is enabled
splk #0000h,IMRB
splk #0000h,IMRC

;Set IMR for INT2 and clear any Flags
;INT2 (PWM interrupt) is used for motor control
;synchronization

ldp #0h
lacc #0FFh
sacl IFR
lacc #0000010b
sacl IMR
ldp #ctrl_n ;set the right control variable page
clrc INTM ;enable all interrupts, now we may

;serve interrupts

* END Enable Interrupts

* Serial communication initialization

ldp #DP_PF1
splk #00010111b,SCICCR ;one stop bit, no parity, 8bits
splk #0013h,SCICTL1 ;enable RX, TX, clk
splk #0000h,SCICTL2 ;disable SCI interrupts
splk #0000h,SCIHBAUD ;MSB |
splk #0082h,SCILBAUD ;LSB |9600 Baud for sysclk 10MHz
splk #0022h,SCIPC2 ;I/O setting
splk #0033h,SCICTL1 ;end initialization

* Virtual Menu

menu

clrc xf ;default mode (will be saved as context)
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available ?
bcnd menu,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0ffh ;only 8 bits !!!
ldp #option ;if yes, get it and store it in option
sacl option ;now in option we have the option

;number of the virtual menu
sub #031h ;is it option 1 ?

Appendix A - TMS320F240 FOC Software

60 Literature Number: BPRA076

bcnd notone,neq ;if not branch to notone

* Option 1): Speed reference

navail11

ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail11,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail12
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail12,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl n_ref ;store it n_ref
b menu ;return to the main polling cycle

*** END Option 1): speed reference

notone
lacc option
sub #032h ;is it option 2 ?
bcnd nottwo,neq ;if not branch to nottwo

* Option 2): DAC update

navail21

ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail21,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #da1
sacl da1 ;if yes, get it and store it in da1

navail22
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail22,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #da1
sacl da2 ;if yes, get it and store it in da2

navail23
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail23,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #da1
sacl da3 ;if yes, get it and store it in da3

navail24
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail24,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #da1
sacl da4 ;if yes, get it and store it in da4
b menu ;return to the main polling cycle

*** END Option 2): DAC update

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 61

nottwo
lacc option
sub #033h ;is it option 3 ?
bcnd notthree,neq ;if not branch to notthree

* Option 3): flag run

navail31

ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any characteravailable (8 LSB)?
bcnd navail31,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail32
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail32,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl run ;store it in run
b menu ;return to the main polling cycle

*** END Option 3): iSdref
notthree

lacc option
sub #034h ;is it option 4 ?
bcnd notfour,neq ;if not branch to notthree

* Option 4): current regulator parameters setting

navail41

ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail41,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail42
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail42,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Kpi ;store it in Kpi

navail43
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail43,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail44
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail44,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Ki ;store it in Ki

navail45
ldp #DP_PF1

Appendix A - TMS320F240 FOC Software

62 Literature Number: BPRA076

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail45,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail46
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail46,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Kcor ;store it in Kcor
b menu ;return to the main polling cycle

*** END Option 4): current regulator parameters setting
notfour

lacc option
sub #035h ;is it option 5 ?
bcnd notfive,neq ;if not branch to notfive

* Option 5): speed regulator parameters setting

navail51

ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any available (8 LSB)?
bcnd navail51,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail52
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail52,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Kpin ;store it in Kpin

navail53
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail53,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail54
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail54,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Kin ;store it in Kin

navail55
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail55,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #ctrl_n ;control variable page
sacl serialtmp ;if yes, get it and store it in serialtmp

navail56
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail56,ntc ;if not repeat the cycle (polling)

Appendix A - TMS320F240 FOC Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 63

lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #ctrl_n ;control variable page
add serialtmp ;add ACC with lower byte
sacl Kcorn ;store it in Kcorn

b menu ;return to the main polling cycle
*** END Option 5): speed regulator parameters setting

notfive
B menu

**
* END Sensored Speed FOC for AC three phase induction motor
**

Appendix B - Linker File

64 Literature Number: BPRA076

Appendix B - Linker File

-c
-stack 100h
/*-- */
/*MEMORY SPECIFICATION */
/*Block B0 is configured as data memory (CNFD) */
/*and MP/MC=1 */
/*(microprocessor mode). Note that data memory */
/*locations 6h--5Fh */
/*and 80h--1FFh are not configured. */
/*-- */

MEMORY
{

PAGE 0:
FLASH_VEC : origin = 0h, length = 40h
FLASH : origin = 40h, length = 3FC0h
PAGE 1:
REGS : origin = 0h, length = 60h
BLK_B22 : origin = 60h, length = 20h
BLK_B0 : origin = 200h, length = 100h
BLK_B1 : origin = 300h, length = 100h
EXT_DATA : origin = 8000h, length = 1000h

}
/*-- */
/* SECTIONS ALLOCATION*/
/*-- */
SECTIONS
{

vectors : { } > FLASH_VEC PAGE 0
.text : { } > FLASH PAGE 0
.cinit : { } > FLASH PAGE 0
.switch : { } > FLASH PAGE 0
blockb2 : { } > BLK_B22
.bss : { } > BLK_B0 PAGE 1
.data : { } > BLK_B0 PAGE 1
table : { } > BLK_B1 PAGE 1
.sysmem : { } > EXT_DATA PAGE 1
.const : { } > EXT_DATA PAGE 1
.stack : { } > EXT_DATA PAGE 1

}

Appendix C - Sine Look-up table

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 65

Appendix C - Sine Look-up table

.word 0

.word 101

.word 201

.word 301

.word 401

.word 501

.word 601

.word 700

.word 799

.word 897

.word 995

.word 1092

.word 1189

.word 1285

.word 1380

.word 1474

.word 1567

.word 1660

.word 1751

.word 1842

.word 1931

.word 2019

.word 2106

.word 2191

.word 2276

.word 2359

.word 2440

.word 2520

.word 2598

.word 2675

.word 2751

.word 2824

.word 2896

.word 2967

.word 3035

.word 3102

.word 3166

.word 3229

.word 3290

.word 3349

.word 3406

.word 3461

.word 3513

.word 3564

.word 3612

.word 3659

.word 3703

.word 3745

.word 3784

.word 3822

.word 3857

.word 3889

.word 3920

.word 3948

.word 3973

.word 3996

.word 4017

.word 4036

.word 4052

.word 4065

.word 4076

.word 4085

Appendix C - Sine Look-up table

66 Literature Number: BPRA076

.word 4091

.word 4095

.word 4096

.word 4095

.word 4091

.word 4085

.word 4076

.word 4065

.word 4052

.word 4036

.word 4017

.word 3996

.word 3973

.word 3948

.word 3920

.word 3889

.word 3857

.word 3822

.word 3784

.word 3745

.word 3703

.word 3659

.word 3612

.word 3564

.word 3513

.word 3461

.word 3406

.word 3349

.word 3290

.word 3229

.word 3166

.word 3102

.word 3035

.word 2967

.word 2896

.word 2824

.word 2751

.word 2675

.word 2598

.word 2520

.word 2440

.word 2359

.word 2276

.word 2191

.word 2106

.word 2019

.word 1931

.word 1842

.word 1751

.word 1660

.word 1567

.word 1474

.word 1380

.word 1285

.word 1189

.word 1092

.word 995

.word 897

.word 799

.word 700

.word 601

.word 501

.word 401

.word 301

.word 201

.word 101

.word 0

Appendix C - Sine Look-up table

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 67

.word 65435

.word 65335

.word 65235

.word 65135

.word 65035

.word 64935

.word 64836

.word 64737

.word 64639

.word 64541

.word 64444

.word 64347

.word 64251

.word 64156

.word 64062

.word 63969

.word 63876

.word 63785

.word 63694

.word 63605

.word 63517

.word 63430

.word 63345

.word 63260

.word 63177

.word 63096

.word 63016

.word 62938

.word 62861

.word 62785

.word 62712

.word 62640

.word 62569

.word 62501

.word 62434

.word 62370

.word 62307

.word 62246

.word 62187

.word 62130

.word 62075

.word 62023

.word 61972

.word 61924

.word 61877

.word 61833

.word 61791

.word 61752

.word 61714

.word 61679

.word 61647

.word 61616

.word 61588

.word 61563

.word 61540

.word 61519

.word 61500

.word 61484

.word 61471

.word 61460

.word 61451

.word 61445

.word 61441

.word 61440

.word 61441

.word 61445

.word 61451

Appendix C - Sine Look-up table

68 Literature Number: BPRA076

.word 61460

.word 61471

.word 61484

.word 61500

.word 61519

.word 61540

.word 61563

.word 61588

.word 61616

.word 61647

.word 61679

.word 61714

.word 61752

.word 61791

.word 61833

.word 61877

.word 61924

.word 61972

.word 62023

.word 62075

.word 62130

.word 62187

.word 62246

.word 62307

.word 62370

.word 62434

.word 62501

.word 62569

.word 62640

.word 62712

.word 62785

.word 62861

.word 62938

.word 63016

.word 63096

.word 63177

.word 63260

.word 63345

.word 63430

.word 63517

.word 63605

.word 63694

.word 63785

.word 63876

.word 63969

.word 64062

.word 64156

.word 64251

.word 64347

.word 64444

.word 64541

.word 64639

.word 64737

.word 64836

.word 64935

.word 65035

.word 65135

.word 65235

.word 65335

.word 65435

Appendix D - User Interface Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 69

Appendix D - User Interface Software

REM ** *
REM TEXAS INSTRUMENTS *
REM Sensored Speed Field Orientated Control of an AC *
REM induction motor *
REM ** *
REM USER INTERFACE program : foc.BAS *
REM Author : Riccardo Di Gabriele *
REM ** *

OPEN "COM1: 9600,N,8,1,CD0,CS0,DS0,OP0,RS,TB1,RB1" FOR OUTPUT AS #1
PRINT #1, "1"; CHR$(0); CHR$(0); : REM speed reference initialization to 0
PRINT #1, "2"; CHR$(16); CHR$(18); CHR$(17); CHR$(19); :
REM dac initialization
PRINT #1, "3"; CHR$(0); CHR$(0); : REM flag run initialization to 0
PRINT #1, "4"; CHR$(0); CHR$(16); CHR$(0); CHR$(1); CHR$(0); CHR$(1): REM current PI parameters
initialization
PRINT #1, "5"; CHR$(43); CHR$(72); CHR$(53); CHR$(0); CHR$(11); CHR$(0): REM speed PI
parameters initialization

flag = 0
run$(0) = " N "
run$(1) = " Y "
speedref = 0
da1 = 16: da2 = 18
da3 = 17: da4 = 19
Kpi = 1
Ki = .0625
Kcor = .0625

Kpin = 4.51
Kin = .0129
Kcorn = .0028
speedpu = 1500: REM mechanical base speed

DIM daout$(200)
daout$(0) = "ia"
daout$(1) = "ib"
daout$(2) = "ic"
daout$(3) = "t1"
daout$(4) = "t2"
daout$(5) = "Vref1"
daout$(6) = "Vref2"
daout$(7) = "Vref3"
daout$(8) = "VDC"
daout$(9) = "taon"
daout$(10) = "tbon"
daout$(11) = "tcon"
daout$(12) = "iSalfa"
daout$(13) = "iSbeta"
daout$(14) = "VSalfar"
daout$(15) = "VSbetar"
daout$(16) = "iSdref"
daout$(17) = "iSqref"
daout$(18) = "iSd"
daout$(19) = "iSq"
daout$(20) = "VSdref"
daout$(21) = "VSqref"
daout$(22) = "epiq"
daout$(23) = "epid"
daout$(24) = "xiq"
daout$(25) = "xid"
daout$(26) = "n"
daout$(27) = "n_ref"
daout$(28) = "epin"
daout$(29) = "xin"
daout$(30) = "X"
daout$(31) = "Y"
daout$(32) = "Z"
daout$(33) = "sector"
daout$(34) = "Teta_cm"
daout$(35) = "sinTeta_cm"
daout$(36) = "cosTeta_cm"

Appendix D - User Interface Software

70 Literature Number: BPRA076

daout$(37) = "i_mr"
daout$(38) = "fs"

nDA = 12
1 CLS
FOR i = 0 TO nDA
COLOR 11
LOCATE (11 + i), 2: PRINT "("; : PRINT USING "##"; i; : PRINT ") "; daout$(i)
LOCATE (11 + i), 22: PRINT "("; : PRINT USING "##"; i + nDA + 1; : PRINT ") "; daout$(i + nDA +
1)
LOCATE (11 + i), 42: PRINT "("; : PRINT USING "##"; i + 2 * nDA + 2; : PRINT ") "; daout$(i + 2
* nDA + 2)
LOCATE (11 + i), 62: PRINT "("; : PRINT USING "##"; i + 3 * nDA + 3; : PRINT ") "; daout$(i + 3
* nDA + 3)
NEXT i
LOCATE 1, 12
COLOR 12: PRINT " Sensored Field Orientated Control of an AC Induction Motor"
PRINT
COLOR 10: PRINT "<1>"; : COLOR 2: PRINT " Speed_reference ("; speedref; "rpm)"
COLOR 10: PRINT "<2>"; : COLOR 2: PRINT " DAC_Outputs DAC1: ("; daout$(da1); ")"
LOCATE 4, 35: PRINT "DAC2: ("; daout$(da2); ")"
PRINT " DAC3: ("; daout$(da3); ")"
LOCATE 5, 35: PRINT "DAC4: ("; daout$(da4); ")"
COLOR 10: PRINT "<3>"; : COLOR 2: PRINT " Run (N=NoRun) ("; run$(flag); ")"
COLOR 10: LOCATE 3, 50: PRINT " <4>"; : COLOR 2: PRINT " Kpi ("; Kpi; "pu)"
COLOR 10: LOCATE 4, 50: PRINT " "; : COLOR 2: PRINT " Ki ("; Ki; "pu)"
COLOR 10: LOCATE 5, 50: PRINT " "; : COLOR 2: PRINT " Kcor ("; Kcor; "pu)"
COLOR 10: LOCATE 6, 50: PRINT " <5>"; : COLOR 2: PRINT " Kpin ("; Kpin; "pu)"
COLOR 10: LOCATE 7, 50: PRINT " "; : COLOR 2: PRINT " Kin ("; Kin; "pu)"
COLOR 10: LOCATE 8, 50: PRINT " "; : COLOR 2: PRINT " Kcorn ("; Kcorn; "pu)"

COLOR 10: LOCATE 9, 10: PRINT "Choice : ";
DO
a$ = INKEY$
LOOP UNTIL ((a$ <= "5") AND (a$ >= "1")) OR (a$ = "r") OR (a$ = "R")

SELECT CASE a$
CASE "1"

REM 4.12 format
PRINT a$; ") ";
PRINT "Speed_Reference ("; speedref; "rpm) : ";
INPUT speedref$
IF speedref$ = "" THEN 1
speedrpu = VAL(speedref$) / speedpu
IF (speedrpu >= 7.999755859#) THEN speedrpu =

7.999755859#
IF (speedrpu <= -8) THEN speedrpu = -8
speedrefpu = CLNG(speedrpu * 4096)
IF (speedref < 0) THEN speedrefpu = 65536 +

speedrefpu
REM Send "Option" - "LSB" - "MSB"
PRINT #1, "1"; CHR$(speedrefpu AND 255);

CHR$((speedrefpu AND 65280) / 256)
speedref = speedrpu * speedpu
GOTO 1

CASE "2"
REM standard decimal format
PRINT a$; ") ";
PRINT "DAC1, DAC2, DAC3 or DAC4 ? ";

2 dach$ = INKEY$
IF dach$ = "" THEN 2
IF dach$ = CHR$(13) THEN 1
IF dach$ = "1" THEN

PRINT "DAC1 Output ("; da1; ") : ";
INPUT da$
IF da$ = "" THEN 1
da1 = VAL(da$)

END IF
IF dach$ = "2" THEN

PRINT "DAC2 Output ("; da2; ") : ";
INPUT da$
IF da$ = "" THEN 1
da2 = VAL(da$)

END IF
IF dach$ = "3" THEN

PRINT "DAC3 Output ("; da3; ") : ";
INPUT da$
IF da$ = "" THEN 1

Appendix D - User Interface Software

Implementation of a Speed Field Orientated Control of Three Phase AC Induction Motor using TMS320F240 71

da3 = VAL(da$)
END IF
IF dach$ = "4" THEN

PRINT "DAC4 Output ("; da4; ") : ";
INPUT da$
IF da$ = "" THEN 1
da4 = VAL(da$)

END IF
REM Send "Option" - "LSB" - "MSB"
PRINT #1, "2"; CHR$(da1 AND 255); CHR$(da2 AND 255);

CHR$(da3
AND 255); CHR$(da4 AND 255)

GOTO 1
CASE "3"

REM 4.12 format
IF (flag = 1) THEN flag = 0 ELSE flag = 1
flagpu = CLNG(flag * 4096)
REM Send "Option" - "LSB" - "MSB"
PRINT #1, "3"; CHR$(flagpu AND 255); CHR$((flagpu AND 65280) / 256)

31
GOTO 1

CASE "4"

REM 4.12 format
PRINT a$; ") ";
PRINT "Kpi ("; Kpi; ") : ";
INPUT Kpi$
IF Kpi$ = "" THEN 41
Kpi = VAL(Kpi$)
REM Send "Option" - "LSB" - "MSB"

41
PRINT " Ki ("; Ki; ") : ";
INPUT Ki$
IF Ki$ = "" THEN 42
Ki = VAL(Ki$)

42
Kpipu = 4096 * Kpi
Kip = 4096 * Ki
Kcor = (Ki / Kpi)
Kcorpu = 4096 * Kcor
REM Send "Option" - "LSB" - "MSB"
PRINT #1, "4"; CHR$(Kpipu AND 255); CHR$((Kpipu AND 65280) / 256); CHR$(Kipu

AND 255); CHR$((Kipu AND 65280) / 256); CHR$(Kcorpu AND 255); CHR$((Kcorpu AND
65280) / 256)

GOTO 1
CASE "5"

REM 4.12 format
PRINT a$; ") ";
PRINT "Kpin ("; Kpin; ") : ";
INPUT Kpin$
IF Kpin$ = "" THEN 51
Kpin = VAL(Kpin$)
REM Send "Option" - "MSB" - "LSB"

51
PRINT " Kin ("; Kin; ") : ";
INPUT Kin$
IF Kin$ = "" THEN 52
Kin = VAL(Kin$)

52
Kpinpu = 4096 * Kpin
Kinpu = 4096 * Kin
Kcorn = (Kin / Kpin)
Kcornpu = 4096 * Kcorn
REM Send "Option" - "LSB" - "MSB"
PRINT #1, "5"; CHR$(Kpinpu AND 255); CHR$((Kpinpu AND 65280) / 256); CHR$(Kinpu

AND 255); CHR$((Kinpu AND 65280) / 256); CHR$(Kcornpu AND 255); CHR$((Kcornpu
AND 65280) / 256)

GOTO 1
END SELECT

I. CLOSE #1

	IMPORTANT NOTICE
	Contents
	List of Figures
	ABSTRACT
	Introduction
	The Field Orientated Controlled AC Induction Drive
	The AC induction motor
	The control hardware
	The Power Electronics Hardware
	Complete Field Orientated Speed Control Structure Presentation

	Field Orientated Speed Controlled AC Induction Drive Software Implementa\
tion
	Software Organization
	DSP Controller Setup
	Software Variables

	Base values and PU model
	Magnetizing current considerations
	Numerical considerations
	The numeric format determination

	Current Sensing and Scaling
	Speed Sensing and Scaling
	The PI regulator
	Clarke and Park transformation
	The (a,b)->(,) projection (Clarke transformation)
	The (,)->(d,q) projection (Park transformation)

	The current model
	Theoretical background
	Numerical consideration
	Code and experimental results

	Generation of sine and cosine values
	The Field Weakening
	Field Weakening Principles
	Field Weakening Constraints
	TMS320F240 Field Weakening Implementation

	The Space Vector Modulation
	Experimental Results
	The control algorithm flow chart

	User Interface
	Conclusion
	References
	Appendix A - TMS320F240 FOC Software
	Appendix B - Linker File
	Appendix C - Sine Look-up table
	Appendix D - User Interface Software

