— RAE A 8 B -2 it

RN G S A EBXNE, TRSURXMIERATKT . BREFXN. IR, BFRELRMET .
BRBE—RBEZSEIM BRI HEE. TR, XMELRERRMAS S BT EH RS
HEEAMR. AN RBASHERRRMER T —HAKERKEL. ERNRREFES
M BB BRI T2 EE EMRER BE TR RAAREENET T AW ERRENFEFE
5 b2 S AR R SRR A

S| L —HRRKETR

ETH, SBREEMUTOGREANERE ik, R Rk, FARIER, KREMEZES. HE
H, BKEEBEE— —HENREREALRE 1. BT ILAEELRELH ZARYCN], EHBEAT
5HE—ENENKNATEENNLK, RZFR. BROIXEATEMAFILHE, RNMATEME=A
REZEN=ZARY, "IEZL" " RZL" KSR, XALRE: MIIERRSR AT A2 B AR
52 A 2276 TE BR AR R B A 6 1RT B R IBER

(B —>

The sine wave

The cosine wave

WMFEARFTAER), XA R RRER, XRREE—ENNE. AHZE, ENEFERER—H.
PR EERRMRE, HIERFEETRITHRNRZBITHHIAERAE. ELERY, BROWTHER
IHE—A25 RE I R BT LI B 3 FE R TR E E K BCKEBRES? WK BRATARE. KB EBHIMNEX 2
EZBEMRZLE, FHREERSIEZRRIABHRIAR AN ELS, ERBEFRE EZR . EREH
—AEEMRE IR EERRNE—EE RN NE S ONRIEMBES . FRRKRT S RIEMES,
TR R D BB PR

(BB =)

Low frequency sinusoid

Middle frequency sinusoid

High frequency sinusoid

BB 2: THESL EE

Jean-Baptiste Joseph Fourieg £ TAT14 ik B BB HM BRI B — A, B0 fth+ 00 % B BEIT 46365 At
BIEFEROEERE. MR—ETBTREERTE, ERERKRIAREMER TR 4L S B,
fla iR T BRI —FEA P T ERIOAR, WRAZARBIOTT RERB XA HE GRERME
ERTRERIER . REZERED . TEMBRITEEFROEZ: HEHNERSER—BNEREEER R
K5 SEAE B — MR AR K IER R BEARET

XR—AMITF:
B e B ST
] This is our original
o t\: —
One sine
e
1‘ -
Two sines
Four sines
Seven sines
o TR
Fourteen sines

FEXBREZNR—NRENES, DRIMTHEE—HEHXR (RS REFE—ERNIEZR R
Y (BRARENAZR) FrBiL. BATKEIRBYIR—TRBET . miRFrH, RITAKIEZREES
HERRAREFBBERINNRESRESBRE. £ WL HFP, EETELNMTT, BIIREELTTTT R
FRMEEANT, BENZEEURABERE, FREELRDSKNIEZXRECA TR LER MR ENF
o iz, MHEFESHEEN—H, ROAREBERENIT. MR, RITELCETAEREE
TR — € MR RIS ARG S BN, RIAFEERSHIEZLRE, RIMIMRATEEES.
MEBRIMEEITREAN EFES B2, HINEEN—KEREBESR, £ MERITENLRES,
R AE P] 8L IE X A% E J7 4

PR3 FEZ RED

IEMBAFrAER, KRFEREBIE R BREFE R IERBHTEL . BRIMBFERTESD DIEZLBR
HWEEE—MEFHEN LARRES. AR, MERMMEEECENFESRIMTHRE, XTRESE
—ANBANERB . EFZHELT, RICENALHANGESTREEEERNGH, UETRINMER
ANGGESLERR LS B WAFEE. EXHERT, BERINTEMERENE SR H SO EXKBRY
B, BRFE—ANRMNEFTESVEREN LR REMK, XX ERBRE LS DB, LRI
EREMHELE: R&—Ms5SRATHFT 1000MFK, FIREFFLERIRE A HIEZSE (BB mA7EH
) UREMRIERA S MESNREN. B, REIRKIEZBHRA 500 MEIERM 500 MEATER
i1 1000 4~RAEH, HER—RERRE. TEPRRBARTRIERNE, B, REHZEEKIEZR
DAERRSIXHE:

The highest frequency sine wave

C PP

BAELRATRE — T RICHR EZLFETRDS 4K MRBRMNRE—ABIMERER, RATEE T HET
B S AR IEZBEETMA? BAMAE, BATHFSARAMIEZRET XA,

(BB T

Frek, — AR mA R UEFRITK TARRKMEMSE. IE, MRBRIEHNRE, BaFd
PR EZ BRI BEAR R 47 EXFFR T ERER L. I —MFEXHNROIEF AR IEX
Beo CEERMIXHE:

The lowest frequency sine wave

(P E7)

BEBEFRHRNREZMT FH—MERENZERTZ (BA#HR=ANEEE A2 E A ER AN
e, ERMNERE EARTEREANFRSUEAERAR) . RITAETS KRR AR R E 3R 3 E —AM4T
TR, SRENPINHRZ AR IEZBEFBE . MRBATH 10001KH, BARN 4T HE
THEABBREHRE, 15K 10005 R W RSHERRAIMIE, 25BN 5% AR
RE TR, FTOARMITLARS, JRATKF/NT T RBEE N AB I, R/NEZRNRREREE
i Biltm, WRBATESE 20004KHE, FHABAESTT, £ 1 5B 20005 KAEM, BrLABARIEZ B
Bk, BELE, BREFHRE FEREDNRATOE FH 1000 RERZHE. X, MRBMNEELHX
B, BATRREFA H — N ERIARMIEZ S, FAEMNERNA (BN TT) BBEHRER. XN
THETHREERIFEERN.

SBEMBRNTEE, ERNMTT 25, RIMBHTHER EARE B M TR T TR
B o XEWEERH MBI TR E S TR IERR N —F, RAQFR—MER—BREN .

B —TRANZES R, BRAIEE, —ARBEIEZB N ERIRRFTALEE — MR A
XKEE, SR, R RERNE 2N IEFLERFERNEZEOAYK—F. BEF T, IRIFEHRE,
L ERBRRFEER, HHRES RPN SRS DA FRK? BTt 25 RBATRE N —MESIT 463
EZERBERAR—IBKORMHNBENES

—UIEERT, BRIMIBRAMERNBEFTESDEZLRE. RERMNAEMEEREZRSBITHE
RIA ETREE—H, ROGTHHESXHMIRZBNERSD. BRRMNGE BREBIBA HRE
€ T BRIRIEZE N B, RITEHRE R EIERBREHER XS FOhH A RNBEA RN 4412 FiF

M IEZ B AR). RRIEZBRRREH b L —ABEE RH5%. ENRRBREE_AMT T2 (R
FEARAIBTT), BMBEBATTEMIEZE. XSBWMTRR, RIKEESE (D Y12 ARERE, £=59
B (2 DIAASNRE, F=080 1 12 AR URET R RINE BN 1000, BRM, F
ERERIX:

(BB
B, MRARMNE—TELDEZFE UM I ERIRIIK 1000 NMREE, RESRARINTEHMETE
1000 AN IESZFEBINER RS 1000 KA. Lhr L, BALERRKABRINFTENRE—HLHIEZK.

PB4 XRTRERE

ERMHNBERNER, £—NMEENETEI LNESREEZRRBEYREE. RIFZET A
R, FAERT FTESKKNBEMBERAR N EZBERTERBERE—NRIFTONES. BRINHAB
TABENMTRACKIEZE B, BRIOBRARENHERER, BERATERIGIRIEZFR IETLH WL T
REFER-FENLER. ABNEZBRAREMBENRES, ROFEUEMRMKASI—ATHEH. LK
£, BWEARBMNFEEMENME—KF. RIEFEMEEZENIERE, bRERSNMNEXBBEELH
ARBEE R ERNTENBAGS . RERERBENENNRE, SERMNEFL REE. @E
HEE, RITEINAESFHRER. i, MRAEE—ANEFFSRTNGES, THEW TR S &+ KK
PR ESZR K BUHILRMEZBESBER. BR—KELT, KT RERBIEZEH — M RMIER
BERMREE . R, BATHHEHE SN2 BIEZBEE U TRBEINETT .

SRS RTERMET

MR —EBRER, BAVLEERTEAERHZRERE. RIETHESDOEZLE, EHHEK
BTRMNEFEORFENHEET MR ETRA, HEARREEA#E B4 B 80 BE ASE R ERAK 5
77 o BA—EATE R T T 00T ABRATTIIRAE R E SLORHIACTT - B _EBRATTAT LAY R RE 4R 2 IE 5K B HIME AE »
BRI DARR EZBARAEEX T, RITMEBRHENFE S 2EIE. MRCITEHRESE, RO
BRIEZBEAEEARNER, MRARMERARNKESESHERE —KEBALE, BITEASZADAAR
e, REW, RIOTWTRBHE N IR IEZREFREGE SHTHR? e, HrPESLET
EEROHRT mfTERE. FEE, XEMEMRE—HE 5 RO —> CARRK BAIEZR X
BEWRECHRER 1, ATARMK T ES ST EH P RFRE) MBRIINESREMER. BMRRZ)E,
BAVE BB BAVEEII BX AR _EIEZB > BEMER . X2, —MERKTERIXLETER C AR
BB

Listing 1.1: The direct realization of the Discrete $he Transform (DST):

#define M_PI 3.14159265358979323846

long bin,k;
double arg;
for (bin = 0; bin < transformLength; bin++) {
transformData[bin] = 0.;
for (k = 0; k < transformLength; k++) {
arg = (float)bin * M_PI *(float)k / (float)transfor mLength;
transformData[bin] += inputData[k] * sin(arg);

}

X BB AFAEFE inputDatal0...transformLength-1] 7 BATTI & B RAE S B — M EZ B0 B K18
FEBA% transformData[0...transformLength-1] . RIFBBAARE, BATHRSE FZENIALRL KA E (bin) ,
XERECMEAAZRE—ABRIBERNGETHEZSBENEENAS. BEEZTHROSHE—

LEER, ERERMNEERZBINGESERRSMA 28K, BRI AN &M K75 R
SEIEZB A EIEE (B, RAIFEME, BRIIKGE SR CEHMENIEZE. RIGEEEMKNE
R BT AN T IE SR B AN E . SEBLIXANE RNEIE B2 T B R, B RE7E SCHR) 3R /R (Goe
rize) Hik & H THRED .

X RAR R RFARE A BRA A A2 R AR B 7 15 S IE LR BB — MR . X RATAH — A B AR IE7L
BRIFRBRAE—FIE R EMEE N E H, WURA, XRBAIT-AEHERRN IR EREN R LR
YEMFRAEKEE. sin(arg) AR/ LR —/ R\ HEAE SRR KRS WREA (F5) FE&
BRAMVEMPEHER LS E, CHRE R RS ERBOERNEE. FARMNNSERRAMIERSN, B
HE—ANERMAR LS BFEFREN—ANERNE. FhigRes IERENIEHES, THh (AUE
WREMMBERFAT) BAAFRE KB R SARNE, S TRIMEGEXRREFLHEE. XA
By TR —ANEE, AL R ERME TR E SR TR —MRUTR.

REATEEN: IR, LRABRFRTEK, JRMNMEEKIEZESERN, RIINESERTHHE
IR W) 2B ER, Bl R RS IERBINER. X8 TAEREMI—NE] . AFRFREREAR
SR B AR B BT AR -BAT) A G 18 B E sin(arg) AR 2] cos(arg PRIV B LR X AR B H #B(DC

B

RAE, MBAEIXRCERAE KBS RINTS LR, ROVELERS B PERS— MR IE
RREBR R IEZFEERRZLY . BARBBINERNRIEZFS, BERMKEERELEPERALRK
W, BT —SERER (RERESNY, NEREAZR AT M ERNR LSRRI
RS, Bl REEARSEBIFRAMARFERNKXE) . ERFESRE - HERRRREE K
KR, EAERUFFSEEEHAPDH—MERLE. RINSH, ARZLBIFHT L6, ERELF
BHTE 0. ARMIRIMEZXBIENSE, REBIFHECHARNRE 14 24k, —BFHBERITEN & EA]
i E, XREAN—RE=ARBUHRINBEA. —NEENAYPSET 360° (RFE "E") = 2n MIEAR
20, "n" REZpie’ . n RAEBFRFE 3.14159265358979323846 E=HZ HFHHEEERX) .
REXWHETIH—A 908K n/2 Hifw#E . XM IELE S MARSL, FILRZLPARN EZESH 908K n/2
fir.

AR EERAXLENE . BARMN—ERGERER S 0°BR 0TS (B A BRATERI—NBA]
W RELEZEFINGES) » EXNRNERE—K#BRE SRR, fRiE. MLEXEE. DIEZRKZEME

BABALBREIZE O°BR 90°, —MNRAERMAKIEZSE SRS HIBE (FHEMRE HE) 4
B, SREISHENGE S E—A O°BR 00 HIMAAERD « EFEZA—HALEEHBE AT L: KEED—
YREALEERRRNOER, FAEPIALSEFRRENEHER, %5 RIITENLRLE—
BfE SRS, CRRAEESMHAEZXEEENES.

S| 6: BHEH KR

MEZZRHEGEM R R AP RER RN, ATHEBEE. EIERRGR PR K
EFIERS, EMEMERPIER. REE_EHEM. LR, MNEBKZHRME, BATUR—HEREK
IEZMARTEER B (B R BIET . WRBIESHERRMRIEZE, ZHRIEZHRKE
—AREEE. WREFERZKRZLE, ZREOKZHOEE D KEEE. WRERRERAEKIELS,
WY, EFHET OETEZ-1BRALAZE 1, ERNEXBHEE - MRNABE. XRAF+. —
FFSMIEZ. KRZMAERSMERSEHENIEZFES[2].

Listing 1.2: The direct realization of the Discrete Burier Transform[3]:

#define M_PI 3.14159265358979323846

long bin, k;
double arg, sign = -1.; /* sign = -1 -> FFT, 1 -> iFT */

for (bin = 0; bin <= transformLength/2; bin++) {

cosPart[bin] = (sinPart[bin] = 0.);

for (k = 0; k < transformLength; k++) {

arg = 2.*(float)bin*M_PI*(float)k/(float)tran sformLength;
sinPart[bin] += inputData[k] * sign * sin(arg);

cosPart[bin] += inputData[k] * cos(arg);

BAWBREE AN EE, SR MAREE R R HFTR T MR R AR TE . B B H 28t
i EZMRZERRER AR EZRES T BESRIERFIEMIERRES, MRAFEZNRZL. §F,
RRE—RM e SR,

#define M_PI 3.14159265358979323846

long bin;
for (bin = 0; bin <= transformLength/2; bin++) {
[* frequency */

frequency[bin] = (float)bin * sampleRate / (flod)transformLength;

/* magnitude */
magnitude[bin] = 20. * logl0(2. * sgrt(sinPartpin]*sinPart[bin] + cosPart[bin]*c

osPart[bin]) / (float)transformLength);

/* phase */

phase[bin] = 180.*atan2(sinPart[bin], cosPart[bi]) / M_PI - 90.;

FEBATIE B L3P BIXT DFT Ml ARG, BTG RBEIELIEZE SEIMKBAGE SRR
K FPIE3%(5 5 £ M frequency[k],magnitude[k] 1 phase[KpR#iR . Bafr 2 Hz(Hertz, [E/#), dB(Decibel),

M°(Degree) HHBAELTHEL LIMEMT GCE) BEERMALREMBERR B —HIEZLE
S2ZE, Bl K FFIERESHRIE—DFT FC R, HE RPN E. JATAT LA —-1.0 Mk
WX TF LOMIWERE, XM FAHRL+ER-180% ZESCHRT, MM/ B 2854, BAFI magnitudel] K
VEREIIAE S BIMERE 1, FAF phase[BFRVEREIILE S HIARSLIE .

WAL NMEFCEENSSE, WARBPES —ME1.0,1.01Z FERFFE, HHXHT 0dB &AL #H%
BT MAh—A DFT WAEBNA, tbiniEA L3MAHBATE N ET B BE R B f i 247

gk

ZRMCHIAH, BEMHBELEMERIINBBIEZMRTZESR, ®ETE—MESHER—RIBH
BRTR. REEZBRKRZLZ—, REZEFES AEZMKZENHEGRER) F£ERMG S R
R IESE AR TZB I AL R BATHE T RET I AABAL MRS, EHERHRE B, EMRIIGEHEHBE 2
APEARMIEZBARARZNIEZFES, HREERFSH—H,

HENZHEWERESER, HMERRIMEMTHRESR—ANEZFESRE - LHLENERIRN,
ZHTEMFAKRES KRR AEEH ZREHRBESHZRNEH, IEREENTENESH
REH” T B EERMEE (EFRE—ARMNETE—MESREZMEERT, RITEFVREHIR
BRTAHLL, WX, BEKNREL UM —BE—LHEHRE ENIEZMKRIZLE) .

PAERMBME T RIMBERMAE SE—HE RN LE, MAESERFERNRRAEX
A ERTREANRIER . RATESHT PR AR RASE, FEARILFERR TENRRE K2R
EHESEHEEKL. KRB WBTXE, DEERT —MRERAZBINER, BIRNES KRR T
B BR8] BEE, F— MR R AR T WM [EL LR, ERHBTEANITF R HIR .
BEE SR SR REE M KA SRR E SUE RO T . BT, MAESRRERE
BEHAHEBHMRE . X RSB RRARRRE T FREE MEEAEN OFE, XBRHItA
BATRIEZMRTZB A M FE A WEBANZE) o

RT3, BAH—PRRELE, DFT M—MRERN—H, A/NHTHRTEERSH C@EE)
MGANEEHFARMOALER . XN ES. BERSMEALENRSTREA RN (SE—METH
FRMARBENEEREMNHFZ—, #BE DSPdimension.com ER—RARKXES) , BEFR
EX O BEEAES HMPUELE. FFE, EREINIREMR T ERMKZEERRBHZRRTIH—
Fefl. XA ERITBSEH TXRXENTEE,

B, EENRERE-ANERMEK DFT TR, il — MR Em R smniik. e
R EMMERE 1969F AN CEMREMRZEHBIRMMILEANNTIE) « FFT RE—/EMH
Hik, B bl iU EEERTHE DFT Frib a2, ERERTEMANKEHE. TR, F
FT RUAER/E LT, ERERHKER 2 KR, ELET, WREHNARXRE AT LA
ZHIMRE . FRBMUARIELE FFT WA RIA SR, B, TURELBSARK FFT K, 3K
F—EHATEL FFT B9 2 KREIRE. THEFEHR 1.4 UEF smbFitO% H T —4> FFT #5£3,

Listing 1.4: The Discrete Fast Fourier Transform (FFT):

#define M_PI 3.14159265358979323846

void smbFft(float *fftBuffer, long fftFrameSize, long sign)

/*

FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, & iFFT (inverse)

Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the time domain data in fftBuffer
[0...2*fftFrameSize-1]. The FFT array takes and retuns the cosine and sine parts in an interleaved
manner, ie. fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrrameSize must be a power of
2. It expects a complex input signal (see footnot), ie. when working with ’ common’ audio sig
nals our input signal has to be passed as {in[0],(n[1],0.,in[2],0.,...} asf. In that case, the trasform

of the frequencies of interest is in fftBuffer[0.fftFrameSize].

*/

float wr, wi, arg, *pl, *p2, temp;
float tr, ti, ur, ui, ur, ui, *plr, *pli, *p2r, *p2i;
long i, bitm, j, le, le2, k;

for (i = 2; i < 2*fftFrameSize-2; i += 2) {

for (bitm = 2, j = 0; bitm < 2*fftFframeSize; bitm <<= 1) {
if (i & bitm) j++;

j <<= 1;

if (i <j){

pl = fftBuffer+i; p2 = fftBuffer+j;
temp = *pl; *(pl++) = *p2;
*(p2++) = temp; temp = *pl;

*pl = *p2; *p2 = temp;

for (k = 0, le = 2; k < (long)(log(fftFrameSie)/log(2.)); k++) {

le <<= 1;
le2 = le>>1;
ur = 1.0;
ui = 0.0;

arg = M_PI / (le2>>1);
wr = cos(arg);
wi = sign*sin(arg);

for =0;j<le2;j+=2){

plr = fftBuffer+j; pli = plr+1;
p2r = plr+le2; p2i = p2r+i;

for (i = j; i < 2*fftFrameSize; i += le) {

tr = *p2r * ur - *p2i * uij

ti = *p2r * ui + *p2i * ur;

*p2r = *plr - tr; *p2i = *pli - ti;
*plr += tr; *pli += ti;

plr += le; pli += le;

p2r += le; p2i += le;

tr = urwr - ui*wi;
ui = ur*wi + ui*wr;

ur = tr;

The DFT “a Pied”: Mastering The Fourier Transform i n One Day
Posted byBernseeon September 21, 199950 Comments

If you’ re into signal processing, you will no doubt say that the headline
is a very tall claim. I would second this. Of course you can’ t learn
all the bells and whistles of the Fourier transform in one day without
practising and repeating and eventually delving into the maths. However,
this online course will provide you with the basic knowledge of how the
Fourier transform works, why it works and why it can be very simple to
comprehend when we’ re using a somewhat unconventional approach. The
Important part: you will learn the basics of the Fourier transform
completely without any maths that goes beyond adding and multiplying
numbers! I will try to explain the Fourier transform in Its practical
application to audio signal processing in no more than six paragraphs
below.

Step 1: Some simple prerequisites

What you need to understand the following paragraphs are essentially four
things: how to add numbers, how to multiply and divide them and what a
sine, a cosine and a sinusoid is and how they look. Obviously, I will
skip the first two things and just explain a bit the last one. You probably
remember from your days at school the ‘trigonometric functions’ * that
were somehow mysteriously used in conjunction with triangles to calculate
the length of its sides from its inner angles and vice versa. We don’ t
need all these things here, we just need to know how the two most important
trigonometric functions, the “sine” and “cosine” look like. This is
quite simple: they look like very simple waves with peaks and valleys
in them that stretch out to infinity to the left and the right of the
observer.

The sine wawve The cosine wave

As you can see, both waves are periodic, which means that after a certain
time, the period, they look the same again. Also, both waves look alike,
but the cosine wave appears to start at its maximum, while the sine wave
starts at zero. Now in practice, how can we tell whether a wave we observe
at a given time started out at its maximum, or at zero? Good question:
we can’ t. There’ s no way to discern a sine wave and a cosine wave in
practice, thus we call any wave that looks like a sine or cosine wave
a “sinusoid” , which is Greek and translates to “sinus-like” . An

important property of sinusoids is “frequency” , which tells us how many
peaks and valleys we can count in a given period of time. High frequency
means many peaks and valleys, low frequency means few peaks and valleys:

Low frequency Mid freguency High frequency
sinusoid sinusoid sinusoid

Step 2: Understanding the Fourier Theorem

Jean—Baptiste Joseph Fourier was one of those children parents are either
proud or ashamed of, as he started throwing highly complicated
mathematical terms at them at the age of fourteen. Although he did a lot
of important work during his lifetime, the probably most significant
thing he discovered had to do with the conduction of heat in materials.
He came up with an equation that described how the heat would travel in
a certain medium, and solved this equation with an infinite series of
trigonometric functions (the sines and cosines we have discussed above).
Basically, and related to our topic, what Fourier discovered boils down
to the general rule that every signal, however complex, can be represented
by a sum of sinusoid functions that are individually mixed.

1B S s N o SO
.- ' ----':1 '.- o sine -,:: e-: ' sine

ﬂngmal Wave . waves

sine sine sine
waves waves waves

I == i € four _ o seven <« fourteen

What you see here is our original signal, and how it can be approximated
by a mixture of sines (we will call them partials) that are mixed together
in a certain relationship (a ‘recipe’). We will talk about that recipe
shortly. As you can see, the more sines we use the more accurately does
the result resemble our original waveform. In the ‘real’ world, where
signals are continuous, ie. you can measure them in infinitely small
intervals at an accuracy that is only limited by your measurement

equipment, you would need infinitely many sines to perfectly build any
given signal. Fortunately, as DSPers we’ re not living in such a world.
Rather, we are dealing with samples of such ‘realworld’ signals that
are measured at regular intervals and only with finite precision. Thus,
we don’ t need infinitely many sines, we just need a lot. We will also
talk about that ‘how much is a lot’ later on. For the moment, it is
important that you can imagine that every signal you have on your computer
can be put together from simple sine waves, after some cooking recipe.

Step 3: How much is “a lot”

As we have seen, complex shaped waveforms can be built from a mixture
of sine waves. We might ask how many of them are needed to build any given
signal on our computer. Well, of course, this may be as few as one single
sine wave, provided we know how the signal we are dealing with is made
up. In most cases, we are dealing with realworld signals that might have
a very complex structure, so we do not know in advance howmany ‘partial’
waves there are actually present. In this case, it is very reassuring
to know that if we don’ t know how many sine waves constitute the original
signal there is an upper limit to how many we will need. Still, this leaves
us with the question of how many there actually are. Let’ s try to approach
this intuitively: assume we have 1000 samples of a signal. The sine wave
with the shortest period (ie. the most peaks and valleys in it) that can
be present has alternating peaks and valleys for every sample. So, the
sine wave with the highest frequency has 500 peaks and 500 valleys in
our 1000 samples, with every other sample being a peak. The black dots
in the following diagram denote our samples, so the sine wave with the
highest frequency looks like this:

The highest frequency sine wave
in our discrete signal

Now let’ s look how low the lowest frequency sine wave can be. If we are
given only one single sample point, how would we be able to measure peaks
and valleys of a sine wave that goes through this point? We can’ t, as
there are many sine waves of different periods that go through this point.

Many sine waves can go through one single point,
so one point alone doesn't tell us anything about their
frequency

So, a single data point is not enough to tell us anything about frequency.
Now, if we were given two samples, what would be the lowest frequency
sine wave that goes through these two points? In this case, it is much
simpler. There is one very low frequency sine wave that goes through the
two points. It looks like this:

The lowest frequency sinusoid that goes
through two adjacent points

Imagine the two leftmost points being two nails with a string spanned
between them (the diagram depicts three data points as the sine wave is
periodic, but we really only need the leftmost two to tell its frequency).
The lowest frequency we can see is the string swinging back and forth
between the two nails, like our sine wave does in the diagram between
the two points to the left. If we have 1000 samples, the two ‘nails’

would be the first and the last sample, ie. sample number 1 and sample

number 1000. We know from our experience with musical instruments that
the frequency of a string goes down when its length increases. So we would
expect that our lowest sine wave gets lower in frequency when we move
our nails farther away from each other. If we choose 2000 samples, for
instance, the lowest sine wave will be much lower since our ‘nails’
are now sample number 1 and sample number 2000. In fact, it will be twice
as low, since our nails are now twice as far away as in the 1000 samples.
Thus, if we have more samples, we can discern sine waves of a lower
frequency since their zero crossings (our ‘nails’) will move farther
away. This is very important to understand for the following
explanations.

As we can also see, after two ‘nails’ our wave starts to repeat with
the ascending slope (the first and the third nail are identical). This
means that any two adjacent nails embrace exactly one half of the complete
sine wave, or in other words either one peak or one valley, or 1/2 period.

Summarizing what we have just learned, we see that the upper frequency
of a sampled sine wave is every other sample being a peak and a valley
and the Jower frequency bound is half a period of the sine wave which
is just fitting in the number of samples we are looking at. But wait -
wouldn’ t this mean that while the upper frequency remains fixed, the
lowest frequency would drop when we have more samples? Exactly! The result
of this is that we will need more sine waves when we want to put together
longer signals of unknown content, since we start out at a lower
frequency.

All well and good, but still we don’ t know how many of these sine waves
we finally need. As we now know the lower and upper frequency any partial
sine wave can have, we can calculate how many of them fit in between these
two limits. Since we have nailed our lowest partial sine wave down to
the leftmost and rightmost samples, we require that all other sine waves
use these nails as well (why should we treat them differently? All sine
waves are created equal!). Just imagine the sine waves were strings on
a guitar attached to two fixed points. They can only swing between the
two nails (unless they break), just like our sine waves below. This leads
to the relationship that our lowest partial (1) fits in with 1/2 period,
the second partial (2) fits in with 1 period, the third partial (3) fits
in with 1 1/2 period asf. into the 1000 samples we are looking at.

Graphically, this looks like this:

The first ¢ partial sine waves (click to enlarge)

Now if we count how many sine waves fit in our 1000 samples that way,
we will find that we need exactly 1000 sine waves added together to
represent the 1000 samples. In fact, we will always find that we need
as many sine waves as we had samples.

Step 4: About cooking recipes

In the previous paragraph we have seen that any given signal on a computer
can be built from a mixture of sine waves. We have considered their
frequency and what frequency the lowest and highest sine waves need to
have to perfectly reconstruct any signal we analyze. We have seen that
the number of samples we are looking at is important for determining the
lowest partial sine wave that is needed, but we have not yet discussed
how the actual sine waves have to be mixed to yield a certain result.
To make up any given signal by adding sine waves, we need to measure one
additional aspect of them. As a matter of fact, frequency is not the only
thing we need to know. We also need to know the amplitude of the sine
waves, ie. how much of each sine wave we need to mix together to reproduce
our input signal. The amplitude is the height of the peaks of a sine wave,
ie. the distance between the peak and our zero line. The higher the
amplitude, the louder it will sound when we listen to it. So, if you have
a signal that has lots of bass in it you will no doubt expect that there
must be a greater portion of lower frequency sine waves in the mix than
there are higher frequency sine waves. So, generally, the low frequency
sine waves in a bassy sound will have a higher amplitude than the high
frequency sine waves. In our analysis, we will need to determine the
amplitude of each partial sine wave to complete our recipe.

Step 5: About apples and oranges

If you are still with me, we have almost completed our journey towards
the Fourier transform. We have learned how many sine waves we need, that
this number depends on the number of samples we are looking at, that there
is a lower and upper frequency boundary and that we somehow need to
determine the amplitude of the individual partial waves to complete our
recipe. We’ re still not clear, however, on how we can determine the
actual recipe from our samples. Intuitively, we would say that we could

find the amplitudes of the sine waves somehow by comparing a sine wave
of known frequency to the samples we have measured and find out how

‘equal’ they are. If they are exactly equal, we know that the sine wave
must be present at the same amplitude, if we find our signal to not match
our reference sine wave at all we would expect this frequency not to be
present. Still, how could we effectively compare a known sine wave with
our sampled signal? Fortunately, DSPers have already figured out how to
do this for you. In fact, this is as easy as multipling and adding numbers
- we take the f‘reference’ sine wave of known frequency and unit
amplitude (this just means that it has an amplitude of 1, which is exactly
what we get back from the sin() function on our pocket calculator or our
computer) and multiply it with our signal samples. After adding the result
of the multiplication together, we will obtain the amplitude of the
partial sine wave at the frequency we are looking at.

To illustrate this, here’ s a simple C code fragment that does this:

AL
2 A4 Listing 1.1: The direct realization of the Dizcrete Sine Transform (D5T):
d

g #define M_PI 3.141802653E597323846
7 long bin,k;
; double arg;

for (bin = 8; bin < transformlength; bines) £

11 transformbatafbin] = 8.3
for (k = B; k < transformLength; kes) £

arg = {floatibin * M_PT *(f loat)k A (f loot)transformLlength;
transfornbata[bin] += inputDatak] * sinfarg);

This code segment transforms our measured sample points that are stored
in inputDatalO. .. transformLength—-1] into an array of amplitudes of its
partial sine waves transformDatalO...transformLength-1]. According to
common terminology, we call the frequency steps of our reference sine
wave bins, which means that they can be thought of as being ‘containers’

in which we put the amplitude of any of the partial waves we evaluate.
The Discrete Sine Transform (DST) is a generic procedure that assumes
we have no idea what our signal looks like, otherwise we could use a more
efficient method for determining the amplitudes of the partial sine waves
(if we, for example, know beforehand that our signal is a single sine
wave of known frequency we could directly check for its amplitude without
calculating the whole range of sine waves. An efficient approach for doing

this based on the Fourier theory can be found in the literature under
the name the “Goertzel” algorithm).

For those of you who insist on an explanation for why we calculate the
sine transform that way: As a very intuitive approach to why we multiply
with a sine wave of known frequency, imagine that this corresponds roughly
to what in the physical world happens when a ‘resonance’ at a given
frequency takes place in a system. The sin(arg) term is essentially a
resonator that gets excited by our input waveform. If the input has a
partial at the frequency we’ re looking at, its output will be the
amplitude of the resonance with the reference sine wave. Since our
reference wave is of unit amplitude, the output is a direct measure of
the actual amplitude of the partial at that frequency. Since a resonator
is nothing but a simple filter, the transform can (admittedly under
somewhat relaxed conditions) be seen as a having the features of a bank
of very narrow band pass filters that are centered around the frequencies
we’ re evaluating. This helps explaining the fact why the Fourier
transform provides an efficient tool for performing filtering of signals.

Just for the sake of completeness: of course, the above routine is

invertible, our signal can (within the limits of our numerical precision)
be perfectly reconstructed when we know its partial sine waves, by simply
adding sine waves together. This is left as an exercise to the reader.
The same routine can be changed to work with cosine waves as basis

functions - we simply need to change the sin(arg) term to cos(arg) to
obtain the direct realization of the Discrete Cosine Transform (DCT).

Now, as we have discussed in the very first paragraph of this article,
in practice we have no way to classify a measured sinus—like function
as sine wave or cosine wave. Instead we are always measuring sinusoids,
so both the sine and cosine transform are of no great use when we are
applying them in practice, except for some special cases (like image
compression where each image might have features that are well modelled
by a cosine or sine basis function, such as large areas of the same color
that are well represented by the cosine basis function). A sinusoid is
a bit more general than the sine or cosine wave in that it can start at
an arbitrary position in its period. We remember that the sine wave always
starts out at zero, while the cosine wave starts out at one. When we take
the sine wave as reference, the cosine wave starts out 1/4th later in
its period. It is common to measure this offset in degree or radians,
which are two units commonly used in conjunction with trigonometric

functions. One complete period equals 360° (pron. “degree”) or 2m
radian (pron. “two pi” with “pi” pronounced like the word “pie” .
n is a Greek symbol for the number 3.14159265358979323846+-- which has
some significance in trigonometry). The cosine wave thus has an offset

of 90° or m /2. This offset is called the phase of a sinusoid, so looking
at our cosine wave we see that it is a sinusoid with a phase offset of
90° or m/2 relative to the sine wave.

So what’ s this phase business all about. As we can’ t restrict our signal
to start out at zero phase or 90° phase all the time (since we are just
observing a signal which might be beyond our control) it is of interest
to determine its frequency, amplitude and phase to uniquely describe it
at any one time instant. With the sine or cosine transform, we’ re
restricted to zero phase or 90° phase and any sinusoid that has an
arbitrary phase will cause adjacent frequencies to show spurious peaks
(since they try to ‘help’ the analysis to force—fit the measured signal
to a sum of zero or 90° phase functions). It’ s a bit like trying to
fit a round stone into a square hole: you need smaller round stones to
fill out the remaining space, and even more even smaller stones to fill
out the space that is still left empty, and so on. So what we need is
a transform that is general in that it can deal with signals that are
built of sinusoids of arbitrary phase.

Step 6: The Discrete Fourier transform.

The step from the sine transform to the Fourier transform is simple,

making it in a way more ‘general’ . While we have been using a sine wave
for each frequency we measure in the sine transform, we use both a sine
and a cosine wave in the Fourier transform. That is, for any frequency
we are looking at we ‘compare’ (or ‘resonate’) our measured signal
with both a cosine and a sine wave of the same frequency. If our signal
looks much like a sine wave, the sine portion of our transform will have
a large amplitude. If it looks like a cosine wave, the cosine part of
our transform will have a large amplitude. If it looks like the opposite
of a sine wave, that is, it starts out at zero but drops to —1 instead
of going up to 1, its sine portion will have a large negative amplitude.
It can be shown that the + and - sign together with the sine and cosine
phase can represent any sinusoid at the given frequency*x.

rr
£

2 A Listing 1.2t The direct realization of the Discrete Fourier Troansform¥s:

(1]

#define M_PI 3.1415926R355979323540

ﬁ

G

7 long bin, kj;

8 double arg, =sigh = -1.; #* =ign = -1 —= FFT, 1 —= iFFT %/

10 | for fbin = 83 bin <= tronsformlength/Z; bine+) {

12 cozPart [bin] = {sinPart[bin] = 8.0

13 for ¢k = B; k < transformlength; kes) £

15 arg = 2.4{f loat)hin*M_PI*f loat)k A (f logt)transformbength;
15 sinPart [bin] += inputDatalk] * sign * sinforg);

cozPart [bin] += inputData[k] * cos{arg);

o o

Pl Fud =ik

h
(o

We’ re still left with the problem of how to get something useful out
of the Fourier Transform. I have claimed that the benefit of the Fourier
transform over the Sine and Cosine transform is that we are working with
sinusoids. However, we don’ t see any sinusoids yet, there are still only
sines and cosines. Well, this requires an additional processing step:

i
2 A Listing 1.3 Getting sinuzoid frequency, magnitude and phasze from
£ othe Dis te Fourier Transform:

i’
i

L

.
G #define M_PI 3.1415926R358979323546

8 long bing

9| | for {bin = 8; bin <= tronsformbengths2; bine+) I

1 A frequency 4/

12 frequency[bin] = {flogtibin * sompleRate / (f loottransformlength;

13 A¥ magnitude #/

14 magnitudebin] = 28, * loglAy 2. * sgrtl sinPart[bin] * sinPart[bin] +
15 cosPart [bin] * cosPart [bin]) /
15 (f Logt ytransformlength’;

M phoze */
phaze[bin] = 188.*atanz{zinPart [bin], cosPart[bin]) / M_PI - 2A.;

o o

Pl Pl ded

h
e

After running the code fragment shown in Listing 1.3 on our DFT output,
we end up with a representation of the input signal as a sum of sinusoid
waves. The k—th sinusoid is described by frequency[k], magnitude[k] and
phase[k]. Units are Hz (Hertz, periods per seconds), dB (Decibel) and
° (Degree). Please note that after the post—processing of Listing 1.3

that converts the sine and cosine parts into a single sinusoid, we name
the amplitude of the k—-th sinusoid the DFT bin “magnitude “, as it will
now always be a positive value. We could say that an amplitude of -1.0
corresponds to a magnitude of 1.0 and a phase of either + or —-180° . In
the literature, the array magnitude[] is called the Magnitude Spectrum
of the measured signal, the array phase[] is called the Phase Spectrum
of the measured signal at the time where we take the Fourier transform.

As a reference for measuring the bin magnitude in decibels, our input
wave is expected to have sample values in the range [-1.0, 1.0), which
corresponds to a magnitude of 0dB digital full scale (DFS). As an

interesting application of the DFT, listing 1.3 can, for example, be used
to write a spectrum analyzer based on the Discrete Fourier Transform.

Conclusion

As we have seen, the Fourier transformand its ‘relatives’ , the discrete
sine and cosine transform provide handy tools to decompose a signal into
a bunch of partial waves. These are either sine or cosine waves, or
sinusoids (described by a combination of sine and cosine waves). The
advantage of using both the sine and cosine wave simultaneously in the
Fourier transform is that we are thus able to introduce the concept of
phase which makes the transform more general in that we can use it to
efficiently and clearly analyze sinusoids that are neither a pure sine
or cosine wave, and of course other signals as well.

The Fourier transform is independent of the signal under examination in
that it requires the same number of operations no matter if the signal
we are analyzing is one single sinusoid or something else more complicated.
This is the reason why the Discrete Fourier transform is called a

nonparametric transform, meaning that it is not directly helpful when
an ‘intelligent’ analysis of a signal is needed (in the case where we
are examining a signal that we know is a sinusoid, we would prefer just
getting information about its phase, frequency and magnitude instead of
a bunch of sine and cosine waves at some predefined frequencies).

We now also know that we are evaluating our input signal at a fixed

frequency grid (our bins) which may have nothing to do with the actual
frequencies present in our input signal. Since we choose our reference
sine and cosine waves (almost) according to taste with regard to their
frequency, the grid we impose on our analysis is artificial. Having said
this, it is immediately clear that one will easily encounter a scenario
where the measured signal’ s frequencies may come to lie between the
frequencies of our transform bins. Consequently, a sinusoid that has a
frequency that happens to lie between two frequency ‘bins’ will not
be well represented in our transform. Adjacent bins that surround the

bin closest in frequency to our input wave will try to ‘correct’ the
deviation in frequency and thus the energy of the input wave will be
smeared over several neighbouring bins. This is also the main reason why
the Fourier transform will not readily analyze a sound to return with
its fundamental and harmonics (and this is also why we call the sine and
cosine waves partials, and not harmonics, or overtones).

Simply speaking, without further post—-processing, the DFT is little more
than a bank of narrow, slightly overlapping band pass filters

(’ channels’) with additional phase information for each channel. It
is useful for analyzing signals, doing filtering and applying some other
neat tricks (changing the pitch of a signal without changing its speed
is one of them explained in a different article on DSPdimension. com),
but it requires additional post processing for less generic tasks. Also,
it can be seen as a special case of a family of transforms that use basis
functions other than the sine and cosine waves. Expanding the concept
in this direction is beyond the scope of this article.

Finally, it is important to mention that there is a more efficient
implementation of the DFT, namely an algorithm called the “Fast Fourier
Transform” (FFT) which was originally conceived by Cooley and Tukey in
1969 (its roots however go back to the work of Gauss and others). The
FFT is just an efficient algorithm that calculates the DFT in less time
than our straightforward approach given above, it is otherwise identical
with regard to its results. However, due to the way the FFT is implemented
in the Cooley/Tukey algorithm it requires that the transform length be
a power of 2. In practice, this is an acceptable constraint for most
applications. The available literature on different FFT implementations
is vast, so suffice it to say that there are many different FFT
implementations, some of which do not have the power—of—-two restriction
of the classical FFT. An implementation of the FFT is given by the routine
smbFft() in Listing 1.4 below.

=]

,_.
[T i R T -~ - ST, T~V Y N

[T I o Ry Sy)
o

Pl Pl e
R

rl
[P e

[FE R TT R eT)
oo g

do e dw e e e e
e TR T

L

WW R
hd

W1 W W LA
£

Lo s T = R R TR Y
Eow Rl D 6 S =i

o
(.

Lo |

= e B owd

(i

i

7
A Listing 1.4: The Discrete Fost Fourier Transform (FFT):
s

#define M_PI 3.1415926R355979323540

woid smbFfE({f oot *fftBuffer, long fftFromeSize, long sign)

F‘I*

FFT routine, (CJL1996 5.M.Bernsee. Sign = -1 iz FFT, 1 iz iFFT {inverse)

Fills TTtBurfer [A...2¥fTtFrameSize-1] with the Fourier tronsform of the time
domain data in FFLBuffer [A, .. 2% ftFramediZe-1]. The FFT arrow tokes ond returns
the cosine and sine parts in on interlegved manner, ie.

fftBuffer[8] = cosPart[@], fftBuffer[l] = sinPart[8], asf. fftFrameSize must
be o power of 2. It expects o complex input sighal see foothote 2%, ie. when
working with 'common' oudio signals our input signal has Lo be pozzed os
fin[8],8.,in[1],8.,in[E] 8. ,.. .} asf. In thot caze, the tronsform of the
freguencies of interest iz in ftBuffer [B...fftFromeSize].

o
i
flogt wr, wi, arg, *pl, *p2, temp;
float tr, ti, ur, ui, *plr, *pli, *pZr, *pdi;
long i, bitm, j. le, leZ, k, logh;
logh = {longy log{fftFrameSize’ log{Z. +.50;

for (i = 2: 1 < 2¥fftFrameSize-2; 1 += 2} {
for (bitm = 2, i = A; bitm < 2Z¥fftFrome5ize; bitm === 1) {
if (1 & bitm) je+s

J === 1;
T
if (1«33
pl = fftBuffer+i; p2 = frtBuffer+j;
temp = #pl; *(ples) = *p2;
®{nZee) = temp; temp = ¥pl;
*pl = *p2; ¥p2 = Lemp;
1
1
for k =8, le = 2; k < logh; kesd £
lg === 1;
le? = lex=l;
ur = 1.8;
ui = 8.8;
arg = M_PL / (leZ==17;
wr = cosiarg);
wi = sign®zinfarg);
for € =8; j < le2; j+=23 1
plr = fftBuffer+j; pli = plr+l;
par = plr+led; p2i = p2r+l;
for (i = j: 1 < 2¥fftFrameSize; i += le) {
tr = *¥pdr * ur - *¥p2i * ui;
ti = *p2r * ui + *p2i * ur;,
*¥pir = ¥plr - try *¥p2i = #¥pli - ti;
¥ply += tr; ¥pli 4= ti
plr += le; pli += le;
PEr += le; p2i += le;
1
tr = ur¥er — ui¥wi;
UL = ur¥wi + ui¥wr;
ur = tr;
1
h

*) simply speaking, trigonometric functions are functions that are used
to calculate the angles in a triangle (” tri—gonos” = Greek for “three
corners”) from the length of its sides, namely sinus, cosinus, tangent
and the arcus tangent. The sinus and cosinus functions are the most
important ones, as the tangent and arcus tangent can be obtained from
sinus and cosinus relationships alone

*%) Note that in the literature, due to a generalization that is made
for the Fourier transform to work with another type of input signal called
a ‘complex signal’ (complex in this context refers to a certain type
of numbers rather than to an input signal that has a complex harmonic
structure), you will encounter the sine and cosine part under the name

‘real’ (for the cosine part) and ‘imaginary’ part (for the sine part).

#kx) If you’ re already acquainted with the DFT you may have noted that
this is actually an implementation of the “real Discrete Fourier
Transform” , as it uses only real numbers as input and does not deal with
negative frequencies: in the real DFT positive and negative frequencies
are symmetric and thus redundant. This is why we’ re calculating only
almost half as many bins than in the sine transform (we calculate one
additional bin for the highest frequency, for symmetry reasons).

