
Technical Note (8 & 16-bits) TN 95

Page 1 of 3

Placing a variable at an absolute address :
In embedded ANSI C programming it is useful to be able to place a specific variable at an absolute
address. This is interesting for instance when a variable is defined to access a specific I/O register.
There are three ways to do it:

� Using an ANSI C macro
� Using the modifier @
� Using a data segment

(The following examples use the register map of the MC68HC912B32 MCU)

Using a C macro:
A C macro can be used to define a variable paced at a specific absolute address. This is done in the
following way:

#define PORTA (*((volatile unsigned char *) (0x0000)))

The previous macro defines PORTA to be the content of a pointer to an unsigned character located at
address 0x0000. This means PORTA is an unsigned character located at address 0x0000.

Access to the port are done in the following way:
PORTA = 0x1F ; /* the port A register is set at the value 0x1F */

This notation is portable on any compliant ANSI C compiler. But it has two drawbacks.
� There is no real variable allocated when you define your variables this way. That means

that you will not be able to see them in a debugger data window.
� The linker does not have any idea, that there is a variable allocated there. It will not detect

any overlap between the variables you have defined using a macro and the application
global variables.

Using the modifier ‘@’:
The compiler has been extended with an additional operator or modifier @. This modifier can be used
to tell the compiler that a variable or constants are placed at a specific absolute address.
The modifier @ is used in the following way to define a register:

volatile unsigned char FEETST @0x00F6 ;

The previous definition line defines FEETST to be an unsigned char allocated at address 0x00F6.
Access to the register FEETST can be performed in the following way:

FEETST=0xD7;

Be Careful: the notation @0x00F6 is not ANSI C standard. It may not work on another compiler.

Using a Data Segment:
Using the segmentation pragmas from the compiler, one can also ensure that a specific variable is
allocated at an absolute address. This is done in two steps. First the variable is defined in a specific
segment and then the segment must be placed at the appropriate address
In your source file, the variable should be defined in the following way:

#pragma DATA_SEG PORTB_SEG

Technical Note (8 & 16-bits) TN 95

Page 2 of 3

volatile unsigned char portb;
#pragma DATA_SEG DEFAULT

The definition above means that an unsigned char (8 bits) variable called ‘portb’ is defined in a
segment called PORTB_SEG.

Now this segment should be placed at the appropriated place in the PRM file. This is done in the
following way:

SECTIONS
 PORTB_SEG = READ_WRITE 0x0001 SIZE 1;

This means that the segment PORTB_SEG is allocated at address 0x0001 (the address of the I\O
PORT B register).
The variable can then be accessed in the following way:

portb = 0x1F ; /* the port B register is set at the value 0x1F */

Be Careful: the data segmentation is not supported in the same way by all ANSI C compilers. You
may need to modify your source code when you switch to another compiler.

Special Notes Regarding the I/O Register definition:

Volatile Modifier
We recombined to use the keyword ‘volatile’ to define all I/O port variables. An ANSI C compiler is
not allowed to optimize accesses on variables defined as volatile. This way you are sure that some
code is generated for each access to an I/O Port.

Accessing the single bits in the I/O Port:
Most of the time, one needs to access the different bits in an I/O register individually. This can be
done using bitfields structure. Then additional macros can be defined to allow to access the different
I/O port bits using their mnemonics.

Definition of the MC68HC912B32 FEETST (Flash EEprom Test Register):

volatile union {
 struct {
 unsigned char MWPR:1;
 unsigned char STRE:1;
 unsigned char VTCK:1;
 unsigned char FDISVFP:1;
 unsigned char FENLV:1;
 unsigned char HVT:1;
 unsigned char GADR:1;
 unsigned char FSTE:1;
 } FEETST_BITS;
 unsigned char FEETST_BYTE;
} FEETST1 @0x00F6;

/* Define mnemonic to access the register */

Technical Note (8 & 16-bits) TN 95

Page 3 of 3

#define FEETST FEETST1.FEETST_BYTE

/* Define mnemonics to access the different bits */
#define MWPR FEETST1.FEETST_BITS.MWPR
#define STRE FEETST1.FEETST_BITS.STRE
#define VTCK FEETST1.FEETST_BITS.VTCK
#define FDISVFP FEETST1.FEETST_BITS.FDISVFP
#define FENLV FEETST1.FEETST_BITS.FENLV
#define HVT FEETST1.FEETST_BITS.HVT
#define GADR FEETST1.FEETST_BITS.GADR
#define FSTE FEETST1.FEETST_BITS.FSTE

You can initialize the different bits in the I/O register using the following notation:

{ …..
MWPR=1; /* The register FEETST is set to the value 0xD7 */
STRE=1;
VTCK=1;
FDISVFP=0;
FENLV=1;
HVT=0;
GADR=1;
FSTE=1;

}

The previous portion of code can be replaced by the following one. In this case the register is access
as a whole.

{
FEETST=0xD7;

}

	Using a C macro:
	Using the modifier ‚@™:
	Using a Data Segment:
	Special Notes Regarding the I/O Register definition:
	Volatile Modifier
	Accessing the single bits in the I/O Port:

