
Freescale Semiconductor
Application Note

Document Number: AN3275
Rev. 0, 05/2006

Contents

Introduction . 1
1.1 Overview . 1

Functional Description. 2
2.1 Hardware Configuration. 2
2.2 Communications . 3
2.3 Oscillator . 3
2.4 Computer Operating Properly (COP) 3
2.5 Memory Configuration . 4
2.6 Interruption Use. 5
2.7 Flash Explanation . 5
2.8 Flash Protection. 5
2.9 Backdoor Key Explanation 5
2.10 EEPROM Explanation . 6
2.11 EEPROM Protection . 6
2.12 Auto Update . 6
2.13 Constraints and Considerations 7

User Guide . 8
3.1 Setup Procedure . 8
3.2 S12 All-Access Bootloader Guide 8
3.3 User Software Guide . 13

S12 All-Access Bootloader
for the HCS12 Microcontroller
Family
by: Rafael Peralez and Gabriel Sanchez

RTAC Americas
1 Introduction
This application note covers the operation and use of the
S12 all-access bootloader for the HCS12 microcontroller
family. A bootloader is a program that runs at the time a
MCU starts which may load software, or may call
software to run. This bootloader enables the user to
program and erase the Flash and EEPROM memory.
Thus, enabling the user to reprogram firmware without
the need of special programming adaptors.

1.1 Overview
Although to originally Flash a bootloader into the MCU
Flash the user needs a special programming adaptor, the
biggest advantage of using a bootloader is that MCUs
can then be reprogrammed very easily and with as little
special hardware as possible. Because all HCS12 MCUs
include an on-chip serial communications interface
(SCI), almost no additional external hardware is required
to communicate with a computer. However, there is one
exception, an RS-232 level translator chip so that the

1

2

3

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Functional Description
MCU may communicate with a PC. Yet, in many systems, the level translator chip may already be part of
the system design since the SCI may be used as a diagnostic port. If a RS-232 is not part of the basic system
design, a small adaptor board may be used when using the bootloader.

In addition to the SCI port used, a single input pin is needed to tell the bootloader whether to execute the
bootloader code or to jump to the user application. This may be done with a switch, pushbutton, or jumper.
An advantage is that if the bootloader begins to run user code, that pin may still be used as an output pin.

When executing from the bootloader code, the user has the ability to:
• Program or erase user Flash and EEPROM
• Secure the MCU using the backdoor keys
• Protect the EEPROM memory

NOTE
When programming the user Flash the user may use both banked and
non-banked S19s.

One major advantage for this bootloader is that the same .s19 file that is generated by the compiler may be
used on all HCS12s devices. What this means is that the user can put the all-access S12 bootloader into
any HCS12 MCU without worrying about the EEPROM and Flash size or it’s location in memory since
the bootloader takes care of it. The bootloader only redirects the system reset vector. This is an important
feature when developing code because once the user executes their code, there will be no latency in
executing an interrupt routine.

2 Functional Description

2.1 Hardware Configuration

After reset, the S12 all-access bootloader’s startup routine
is called. In this routine the status of the PAD0 pin is read.
If the value of this pin is a logical one, the user’s startup
routine is called, but if the value is zero the Bootloader’s
startup routine is the one called. This is done in the
startup.c file; however, the user can modify the code to
select a different input to determine its code. If a different
code is not selected, the bootloader is the one that is going
to be executed.

A switch, jumper, or pushbutton may be placed on this pin
in order to have the option of calling the bootloader
section or running the user’s code. The bootloader uses
the internal pullup found on the MCU pin. See Figure 1.

PAD0
PAD1
PAD2
PAD3
PAD4
PAD5
PAD6
PAD7

VCC

R
SW1

1 2

Figure 1. Connection Used to Select Either
User’s or Bootloader Code Execution
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor2

Functional Description
2.2 Communications
Communications are made using the HCS12’s SCI. The MCU uses an 8-data bit, no parity, and stop bit
protocol without flow control.

The baud rate that the MCU will operate at will depend on the crystal or oscillator used. With this
bootloader, the maximum baud rate allowed is 19,200 bps. Table 1 describes baud rates in regards to
typical oscillator frequencies.

Through the use of a HyperTerminal at a specified baud rate, a user may send commands to the MCU to
access the different menus and use all the features of the S12 bootloader.

2.3 Oscillator
The oscillator must be of a value greater than 2 MHz in order to program and erase the Flash. Because of
the impact of clock synchronization on the accuracy of the functional timings, programming or erasing the
Flash cannot be performed if the external clock reference is running on a frequency smaller that 2 MHz.

At the beginning of the bootloader, the value of the oscillator is asked for in kilohertz. This is done with
the intention of configuring the Flash clock divider and making it possible to program and erase the Flash.
It is very important to set the right value of the oscillator in order to set the right value in the Flash clock.

The main reason for setting the right oscillator value is:
• If the Flash clock frequency is less than 150 kHz, the Flash could be destroyed due to overstress.
• If the Flash clock frequency is greater than 200 kHz, incomplete programming or erasing of the

cells can result.

NOTE
The bus frequency is the external reference divided by 2.

2.4 Computer Operating Properly (COP)
Because of the routines used in the bootloader, the COP is disabled during the whole execution of it’s
routines. The COP remains disabled if the user’s code is called (see Section 2.1, “Hardware
Configuration”). If the user’s code needs a watchdog, this must be set in its code by writing the COPCTL
register along with the desired timeout value.

Table 1. Oscillator Frequency Baud Rates

Oscillator Frequency Baud Rate

2 MHz 2400 bps

4 MHz 4800 bps

8 MHz 9600 bps

16 MHz 19,200 bps
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 3

Functional Description
2.5 Memory Configuration
Since the S12 all-access bootloader allows programming of the EEPROM and also needs to know the
RAM location, it is necessary to remap the memory in order to make this bootloader usable for the different
S12 derivatives. It is necessary to consider that there are S12 derivatives with or without 1-K, 2-K or 4-K
of EEPROM, and that these derivatives have different RAM sizes.

The microcontroller’s registers start at address 0x0000. During the bootloader’s startup routine, the MCU
relocates the beginning of the EEPROM to address 0x2000. Also, the RAM is relocated to address 0x5000
(see Figure 2). By doing this, the bootloader always knows where the EEPROM and RAM base address
are located. No matter the size of EEPROM or RAM that the microcontroller has, the bootloader is able
to access both in any of the S12 derivatives. Having access to the EEPROM and RAM makes it possible to:

• Run routines in RAM memory which allow the programming and erasing of all the Flash locations
of each derivative

• Program EEPROM when present

In user’s code, registers, RAM, and EEPROM start addresses may be remapped to wherever the user may
see fit.

Figure 2. Bootloader Memory Map

The RAM will be used supposing that worst case is present. The smallest RAM in the S12 derivatives is
1K. After remapping the RAM, the bootloader will use the following 1024 bytes for its buffers, variables,
and stack.

Up to 4K of EEPROM

$0000

$2000

$5000

$03FFEEPROM
Base Address

RAM
Base Address

Registers

Up to 16K of RAM

$0000

$2000

$2FFF
$5000

$8FFF
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor4

Functional Description
2.6 Interruption Use
The S12 all-access bootloader allows the user to use all interrupt vectors normally, except for the system
reset vector. The system reset vector will have a delay of 15 cycles from what it would have in a typical
application. This delay is the amount of cycles that the MCU takes to check if it should enter the bootloader
or jump into user program code.

One thing to note is that the interrupt vectors reside in the highest page of memory, and in order to change
them the bootloader program must erase and reprogram the last page of memory. This creates a problem
if anything goes wrong during the reprogramming since the reset vector to the bootloader may not be
restored correctly. If this occurs, it would be impossible to recover without the use of special programming
hardware. For this reason, it is important that the user keep a steady MCU input voltage and avoid any ESD
onto the board to avoid this problem.

2.7 Flash Explanation
The HCS12 family uses an advanced, third generation, nonvolatile Flash EEPROM memory that is used
to store application program code and constant data. The Flash memory can be erased and reprogrammed
many times over and is ideally suited to the development phase of a product. Flash memory is also suitable
for the production phase, as product inventories can be reduced by having a common microcontroller for
similar products. Any software changes, upgrades, or fixes can be implemented immediately during
production, without the delay and costs associated with a new ROM mask. Furthermore, products in the
field can be reprogrammed as required without having to replace the microcontroller. Over the product life
span Flash offers significant potential cost savings when compared to ROM.

2.8 Flash Protection
No hardware Flash protection is selected — this allows the reprogramming of interrupt vectors, securing
and editing backdoor keys, and upgrading the bootloader. Because of this, special software considerations
have been taken into consideration in the bootloader. If the user’s code tries to write in a section between
0xF000 to 0xFF00, the bootloader will display an error indicating that the code sent tried to write in the
bootloader’s section and this section of the code will not be written. All the interrupt vectors except the
reset vector will be written in their normal locations. The reset vector will be written into address 0xEFFE
because the bootloader must own the reset vector to be able to determine if the user’s code or the
bootloader code is the one to be called.

2.9 Backdoor Key Explanation
The HCS12 family has a memory security feature that enables the user to protect intellectual property by
preventing unauthorized access to the NVM. By using the different menus of the bootloader, the user can
set the backdoor keys and secure the microcontroller. In some S12 derivatives, securing the
microcontroller makes it impossible to perform certain operations. So, it is important to check the mask of
the microcontroller and read the different errata sheets to know if write and erase functions can be
performed if the microcontroller is secured. This is very important since no error is displayed when a write
operation fails due to the chip security. The security feature still allows the user to program and erase user
Flash, so a new user application may be loaded while the device is secured.
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 5

Functional Description
It is important to note again that the Flash security register, along with the backdoor keys, are located in
the highest page of memory. So, in order to modify any of them, the bootloader must erase and reprogram
the last page of Flash where the reset vector is also located. This creates a problem if anything goes wrong
during the reprogramming since the reset vector for the bootloader may not be restored correctly. If this
occurs, it would be impossible to recover without the use of special programming hardware. For this
reason, it is important that the user keep a steady MCU input voltage and avoid any ESD onto the board
to avoid this problem.

2.10 EEPROM Explanation
Most HCS12 microcontrollers also incorporate EEPROM that may be used to store data variables. HCS12
microcontrollers that do not have EEPROM may use Flash to emulate EEPROM, refer to application note
AN2302 for details and example software. The EEPROM on HCS12 microcontrollers is constructed using
the same basic technology as the Flash memory, but with some adjustments to make it more suitable for
data storage applications. The most obvious of these is the erase sector size, which is 4 bytes.

Once programmed, the EEPROM retains data until it is erased and reprogrammed. The EEPROM can be
erased and reprogrammed many times over, refer to the specific microcontroller’s electrical specifications
for current data retention and write/erase endurance figures.

2.11 EEPROM Protection
The S12 all-access bootloader makes it possible for the user to protect and unprotect the EEPROM
memory. This enables the user to be able to keep the user program from accidentally erasing or
programming the EEPROM.

NOTE
While the EEPROM is protected, the user will not be able to erase or
program the EEPROM.

2.12 Auto Update
By adding the auto update feature, it is possible to generate a new version of the bootloader and update it
without the need of an external programmer. This feature allows improved functionality, generates new
options, removes or optimizes functions, etc.

When this option is selected the new bootloader is saved temporarily in the 4K previous to the location of
the bootloader that is running at the time (from 0xE000 to 0xEFFF). When the new bootloader is fully
received the program jumps to the new update function. This function:

• Erases the previous bootloader (0xF000 to 0xFFFF)
• Copies the new received bootloader from the temporary section to the bootloader Flash space
• Executes a mass erase function with the intention of erasing the temporary bootloader created
• Finishes this option with all of the Flash memory available for writing
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor6

Functional Description
An important thing to consider when using the Auto Update
feature is that once the new bootloader version is fully copied
into the memory section of the bootloader (see Figure 3) all
the contents of the Flash memory will be erased (either
program or data). So, any application that was previously
stored should be programmed again after updating the
bootloader.

2.13 Constraints and Considerations
The bootloader, by its generic nature, has no knowledge of each user’s application. This results in certain
compromises and limitations of which the user should be aware.

1. Due to the memory mapping used by the bootloader, the user cannot use the Flash programming
and erase routines implemented in the bootloader.

2. The bootloader does not change the state of any I/O following reset. It reads the level of one input
to determine if the user’s code, or if the bootloader is going to be executed. After this, the user can
use this pin as a general-purpose output or leave it unused.

3. The bootloader does not use the COP watchdog timer; therefore, the bootloader doesn’t activate it.
If the user wants to use the COP watchdog timer, then it must be enabled within the user’s
application code.

4. Although the software denies the programming of user code into bootloader space, the user
application code should not try to overwrite the section where the bootloader resides.

5. There is always a risk when programming an application into Flash memory using downloaded
programming algorithms that an external disturbance may corrupt the programming process. It
may not be possible to recover from this in all cases. Certain considerations can help minimize the
risk of corruption. The higher risk operations are those that modify the following:
— The MCU reset vector — While the reset vector is erased, a reset will not restart the bootloader.

If the bootloader is to remain resident, then erasing and programming the reset vector
sequentially will minimize the window during which a reset could cause the bootloader
function to become corrupted.

— The application start vector — With the bootloader resident, once the application start vector
is programmed, the bootloader function following reset is disabled. If a premature reset or a
Flash write issue occurs, a reset will then cause a jump to an incomplete application.
Programming the application start vector as the last operation can minimize this risk.

— The bootloader code — If, for some reason, it is necessary to erase the bootloader code from
Flash, a premature reset or Flash programming problem will fail to successfully restart the
bootloader process.

In any of these three cases, recovery can be facilitated by designing easy access to the signals
required for interfacing a BDM interface cable to the MCU.

$E000

$F000

FLASH_END = $FFFF

Temporal
Bootloader

Boot Loader
Section

$3F

Figure 3. Temporal Location to Update
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 7

User Guide
3 User Guide

3.1 Setup Procedure

1. Load S12 all-access bootloader S19 into the MCU
2. Connect to serial communications
3. Open Hyperterm to a specified baud rate depending on OSC. Baud rate should not be greater than

that specified in this bootloader application note.
4. Configure hardware pins so that the MCU will enter bootloader mode
5. Turn on the MCU

3.2 S12 All-Access Bootloader Guide

3.2.1 Setting the Crystal or Oscillator Value

The only thing that needs to be configured
for the bootloader is the value of the crystal
or oscillator used. The speed must be set in
kilohertz. This configuration is used
because it is easier to get a more accurate
value when using this unit of measurement
instead of megahertz.

Figure 4. Setting the Crystal or Oscillator
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor8

User Guide
3.2.2 Navigating through the Loader

In all the windows displayed in the
HyperTerminal, the bootloader will show
all the available options for the current
menu. Each of the options will be
associated to a number. This number is the
one that you have to press on the keyboard
in order to access the desired menu, or to
perform the selected option in the
bootloader.

3.2.3 Erase Flash

In order to erase the Flash from a device you
have to select option number 1 in the first
appearing menu. The bootloader will erase all
the Flash except for the bootloader area of the
device and will send a message once the erase
command is fully executed. If the Flash of the
device is either protected or not working
properly, the bootloader will send an error
message that the command could not be
executed.

Figure 5. Example of a Bootloader Menu

Figure 6. Erase Flash Window
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 9

User Guide
3.2.4 Program Flash

To program the Flash of a device you need to
select option number two in the first menu of
the bootloader. Once you select this option, a
message will appear telling you to send the
S19 record that you wish to program. In order
to do so, you have to click on the Transfer
Menu of the HyperTerminal and then click on
Send Text file. In the opening window, select
to display all type of files and then look for
the S19 record of your project (typically has
the name of the project with extension
.abs.s19 located in the bin folder of your
project)

An important thing to notice in this option is
if the user’s code tries to write into the
memory section reserved for the bootloader
(from 0xF000 to 0xFF00). If this happens, the
bootloader will display an error message and
the code written into the device won’t work
properly.

3.2.5 EEPROM Menu

When the user enters the EEPROM Menu,
the bootloader will display the amount of
EEPROM memory allocated in the device.
If the device has EEPROM, a menu will
display that will help the user to store and
erase data in this memory. If the device
doesn’t have EEPROM, the bootloader will
display that the MCU has 0 Kbytes of
EEPROM and wait for the user to press any
key. Once a key is pressed, the bootloader
will display the main menu again.

The EEPROM Menu also has options to
display again the options of the menu and an
option to return to the main menu if the user
has finished his EEPROM operations.

Figure 7. Programming Flash Menu

Figure 8. EEPROM Menu
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor10

User Guide
3.2.6 Erase and Program EEPROM

The erase and program options of the
EEPROM are identical to those options for
Flash. When choosing to erase the
EEPROM, all the contents of the memory
will be erased. If you choose to program the
EEPROM, you need to send a file with the
same format as the S19 record with the
contents of the data that the user wishes to
program into EEPROM. The same steps
described to program the device Flash
should be followed to use this option (see
Section 3.2.4, “Program Flash”. The
addressing in the EEPROM is such that if
the user wants to program the first byte of
the EEPROM, then the S19 should try to
write to address 0x0000, and so on until the
end of the EEPROM is reached.

3.2.7 Protecting and Unprotecting the Contents of the EEPROM

The EEPROM has the option to protect the
contents of the memory against accidental
program or erase. This bootloader gives
access to this feature.

To protect the EEPROM, the user only has to
choose the third option in the EEPROM
Menu and the contents of the memory will be
protected. To disable this protection option 4
should be selected.

Figure 9. Erase and Program EEPROM

Figure 10. Using the Protection of the EEPROM
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 11

User Guide
3.2.8 Backdoor Access Menu

When the user enters the Backdoor Access
Menu, the bootloader will display the
Backdoor Key Menu. This menu will show
the possible executable commands in regards
to the backdoor keys.

The Backdoor Access Menu also has options
to display again the options of the menu and
an option to return to the main menu if the
user has finished his EEPROM operations.

3.2.9 Lock

The Lock option of the Backdoor Access
Menu permits the user to enable the HCS12’s
backdoor key security feature. Whenever the
user enters this option and the MCU is reset,
the MCU will be locked.

3.2.10 Unlock

The Unlock option of the Backdoor Access Menu permits the user to disable the HCS12’s backdoor key
security feature. If the MCU is not locked, the bootloader will say that the new security has been applied.
Yet if the MCU is locked, then it will ask for the backdoor key to try to unsecure the MCU. If the MCU is
successfully unsecured, the bootloader will prompt saying that the new security was applied. If not, it will
prompt saying that it was unable to unsecure the MCU.

3.2.11 Change Backdoor Key

The Change Backdoor Key option of the Backdoor Access Menu permits the user to change the backdoor
key. When this option is selected and the MCU is not secured, the current backdoor key that is stored in
Flash will be displayed. If the MCU is secured, the bootloader will ask for the user to enter the current
backdoor key. Then the bootloader will try to unsecure the MCU. If the MCU is successfully unsecured,
the bootloader will prompt saying that the MCU was successfully unsecured, and then ask for a new
backdoor key. If the MCU could not be unsecured, then the bootloader will prompt saying that it was
unable to unsecure the MCU and will not prompt for a new key.

3.2.12 View Backdoor Key

The View Backdoor Key option of the Backdoor Access Menu permits the user to view the current
backdoor key whenever the MCU is not secured. When this option is selected, the prompt will display the
current backdoor key stored in Flash if the MCU is not secured. If the MCU is secured, then the prompt
will say that the backdoor key is enabled and will not display the backdoor key.

Figure 11. Backdoor Key Menu
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor12

User Guide
3.2.13 Update Bootloader

When this option is selected, a message will appear telling you to send the .s19 for the bootloader record
that you wish to program. In order to do so you have to click on the Transfer Menu of the HyperTerminal
and then click on Send Text file. In the opening window select display all type of files and then look for
the S19 record of your bootloader project (typically has the name of the project with extension .abs.s19
located in the bin folder of your project), just as in Section 3.2.4, “Program Flash” and Section 3.2.6,
“Erase and Program EEPROM”.

NOTE
Once the programming is finished, the MCU will do a mass erase and then
reset itself. So, please be patient with this option.

3.2.14 Version

When the Version option is selected, the bootloader will display the version of the bootloader that is being
used. This option may be very useful for a user to see exactly what build of a bootloader a MCU has.

3.3 User Software Guide
A user can easily make a CodeWarrior project that can be loaded into the S12 all-access bootloader. All
the user needs to do is to create a new project or to use an existing project, and do the following:

Modify the ROM_C000 segment in the project .prm file so that it does not invade the bootloader
code like this:

ROM_C000 = READ_ONLY 0xC000 TO 0xEFFD;

This step is convenient if you are using Processor Expert, or if you wish to place an existing project into
the S12 bootloader. This assures that the user code will not be placed within the address space where the
bootloader code resides.

It is important to note that the stack size hasn’t changed. The user may go into the .prm file and change the
stack size to whatever size may be needed for the individual application. Once the user wishes to download
the project onto the MCU, the user needs to run the bootloader and program the .s19 file that is generated
by CodeWarrior. Once that is done, the user code will begin to run.

3.3.1 Acronyms and Abbreviations
MCU — Microcontroller Unit
NVM — Nonvolatile Memory
EEPROM — Electrically Erasable Programmable Read Only Memory
ESD — Electrostatic Discharge

3.3.2 References

Freescale application note entitled HCS12 NVM Guidelines (order number AN2400).
S12 All-Access Bootloader for the HCS12 Microcontroller Family, Rev. 0

Freescale Semiconductor 13

Document Number: AN3275
Rev. 0
05/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Overview

	2 Functional Description
	2.1 Hardware Configuration
	2.2 Communications
	2.3 Oscillator
	2.4 Computer Operating Properly (COP)
	2.5 Memory Configuration
	2.6 Interruption Use
	2.7 Flash Explanation
	2.8 Flash Protection
	2.9 Backdoor Key Explanation
	2.10 EEPROM Explanation
	2.11 EEPROM Protection
	2.12 Auto Update
	2.13 Constraints and Considerations

	3 User Guide
	3.1 Setup Procedure
	3.2 S12 All-Access Bootloader Guide
	3.2.1 Setting the Crystal or Oscillator Value
	3.2.2 Navigating through the Loader
	3.2.3 Erase Flash
	3.2.4 Program Flash
	3.2.5 EEPROM Menu
	3.2.6 Erase and Program EEPROM
	3.2.7 Protecting and Unprotecting the Contents of the EEPROM
	3.2.8 Backdoor Access Menu
	3.2.9 Lock
	3.2.10 Unlock
	3.2.11 Change Backdoor Key
	3.2.12 View Backdoor Key
	3.2.13 Update Bootloader
	3.2.14 Version

	3.3 User Software Guide
	3.3.1 Acronyms and Abbreviations
	3.3.2 References

