首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

Java 容器源码分析之Map-Set-List(19)

Java 容器源码分析之Map-Set-List(19)

ConcurrentHashMapConcurrentHashMap 的结构中包含的 Segment 的数组,在默认的并发级别会创建包含 16 个 Segment 对象的数组。通过我们上面的知识,我们知道每个 Segment 又包含若干个散列表的桶,每个桶是由 HashEntry 链接起来的一个链表。如果 key 能够均匀散列,每个 Segment 大约守护整个散列表桶总数的 1/16。
下面我们还有通过一个图来演示一下 ConcurrentHashMap 的结构:

并发写操作在 ConcurrentHashMap 中,当执行 put 方法的时候,会需要加锁来完成。我们通过代码来解释一下具体过程: 当我们 new 一个 ConcurrentHashMap 对象,并且执行put操作的时候,首先会执行 ConcurrentHashMap 类中的 put 方法,该方法源码为:
[url=][/url]
/**     * Maps the specified key to the specified value in this table.     * Neither the key nor the value can be null.     *     * <p> The value can be retrieved by calling the <tt>get</tt> method     * with a key that is equal to the original key.     *     * @param key key with which the specified value is to be associated     * @param value value to be associated with the specified key     * @return the previous value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapping for <tt>key</tt>     * @throws NullPointerException if the specified key or value is null     */    @SuppressWarnings("unchecked")    public V put(K key, V value) {        Segment<K,V> s;        if (value == null)            throw new NullPointerException();        int hash = hash(key);        int j = (hash >>> segmentShift) & segmentMask;        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment            s = ensureSegment(j);        return s.put(key, hash, value, false);    }[url=][/url]

我们通过注释可以了解到,ConcurrentHashMap 不允许空值。该方法首先有一个 Segment 的引用 s,然后会通过 hash() 方法对 key 进行计算,得到哈希值;继而通过调用 Segment 的 put(K key, int hash, V value, boolean onlyIfAbsent)方法进行存储操作。该方法源码为:
[url=][/url]
final V put(K key, int hash, V value, boolean onlyIfAbsent) {    //加锁,这里是锁定的Segment而不是整个ConcurrentHashMap    HashEntry<K,V> node = tryLock() ? null :scanAndLockForPut(key, hash, value);    V oldValue;    try {        HashEntry<K,V>[] tab = table;        //得到hash对应的table中的索引index        int index = (tab.length - 1) & hash;        //找到hash对应的是具体的哪个桶,也就是哪个HashEntry链表        HashEntry<K,V> first = entryAt(tab, index);        for (HashEntry<K,V> e = first;;) {            if (e != null) {                K k;                if ((k = e.key) == key ||                    (e.hash == hash && key.equals(k))) {                    oldValue = e.value;                    if (!onlyIfAbsent) {                        e.value = value;                        ++modCount;                    }                    break;                }                e = e.next;            }            else {                if (node != null)                    node.setNext(first);                else                    node = new HashEntry<K,V>(hash, key, value, first);                int c = count + 1;                if (c > threshold && tab.length < MAXIMUM_CAPACITY)                    rehash(node);                else                    setEntryAt(tab, index, node);                ++modCount;                count = c;                oldValue = null;                break;            }        }    } finally {        //解锁        unlock();    }    return oldValue;}[url=][/url]

关于该方法的某些关键步骤,在源码上加上了注释。
需要注意的是:加锁操作是针对的 hash 值对应的某个 Segment,而不是整个 ConcurrentHashMap。因为 put 操作只是在这个 Segment 中完成,所以并不需要对整个 ConcurrentHashMap 加锁。所以,此时,其他的线程也可以对另外的 Segment 进行 put 操作,因为虽然该 Segment 被锁住了,但其他的 Segment 并没有加锁。同时,读线程并不会因为本线程的加锁而阻塞。
正是因为其内部的结构以及机制,所以 ConcurrentHashMap 在并发访问的性能上要比Hashtable和同步包装之后的HashMap的性能提高很多。在理想状态下,ConcurrentHashMap 可以支持 16 个线程执行并发写操作(如果并发级别设置为 16),及任意数量线程的读操作。
返回列表