首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

热阻

热阻

热阻下一步是要计算每个MOSFET周围的环境温度,在这个温度下,MOSFET结温将达到我们的假定值(按照前面图1所示的迭代过程,确定合适的MOSFET来作为同步整流器和开关MOSFET)。为此,首先需要确定每个MOSFET结到环境的热阻(ΘJA)。
热阻的估算可能会比较困难。单一器件在一个简单PCB上的ΘJA测算相对容易一些,而要在一个系统内去预测实际电源的热性能是很困难的,那里有许多热源在争夺有限的散热通道。如果有多个MOSFET被并联使用,其整体热阻的计算方法,和计算两个以上并联电阻的等效电阻一样。
我们可以从MOSFET的ΘJA规格开始。对于单一管芯、8引脚封装的MOSFET来讲,ΘJA通常接近于62°C/W。其他类型的封装,有些带有散热片或裸露的导热片,其热阻一般会在40°C/W至50°C/W(表1)。
                                
注:同样封装类型的不同器件,以及不同制造商出品的相似封装的热阻各不相同,和封装的机械特性、管芯尺寸和安装及绑定方法有关。需仔细考虑MOSFET数据资料中的热信息。
可以用下面的公式计算MOSFET的管芯相对于环境的温升:

如果计算出的TAMBIENT低于机壳的最大额定环境温度(意味着机壳的最大额定环境温度将导致MOSFET的预定TJ(HOT)被突破),必须采用下列一条或更多措施:
• 升高预定的TJ(HOT),但不要超出数据手册规定的最大值。
• 选择更合适的MOSFET以降低MOSFET的功耗。
• 通过增加气流或MOSFET周围的铜膜降低ΘJA。
重算TAMBIENT(采用速算表可以简化计算过程,经过多次反复方可选出一个可接受的设计)。另一方面,如果计算出的TAMBIENT高出机壳的最大额定环境温度很多,可以采取下述可选步骤中的任何一条或全部:
• 降低预定的TJ(HOT)。
• 减小专用于MOSFET散热的覆铜面积。
• 采用更廉价的MOSFET。
最后几个步骤是可选的,在此情况下MOSFET不会因过热而损坏。不过,通过这些步骤,只要保证TAMBIENT高出机壳最高温度一定裕量,我们可以降低线路板面积和成本。
上述计算过程中最大的误差源来自于ΘJA。你应该仔细阅读数据资料中有关ΘJA规格的所有注释。一般规范都假定器件安装在1in²的2oz铜膜上。铜膜耗散了大部分的功率,不同数量的铜膜ΘJA差别很大。
例如,带有1in²铜膜的D-Pak封装ΘJA会达到50°C/W。如果只将铜膜铺设在引脚的下面,ΘJA将高出两倍(表1)。
如果将多个MOSFET并联使用,ΘJA主要取决于它们所安装的铜膜面积。两个器件的等效ΘJA可以是单个器件的一半,但必须同时加倍铜膜面积。也就是说,增加一个并联的MOSFET而不增加铜膜的话,可以使RDS(ON)减半但不会改变ΘJA很多。
最后,ΘJA规范通常都假定没有任何其它器件向铜膜的散热区传递热量。但在高电流情况下,功率通路上的每个元件,甚至是PCB引线都会产生热量。为了避免MOSFET过热,需仔细估算实际情况下的ΘJA,并采取下列措施:
• 仔细研究选定MOSFET现有的热性能方面的信息。
• 考察是否有足够的空间,以便设置更多的铜膜、散热器和其它器件。
• 确定是否有可能增加气流。
• 观察一下在假定的散热路径上,是否有其它显著散热的器件。
• 估计一下来自周围元件或空间的过剩热量或冷量。
设计实例
图3所示的CPU核电源提供1.5V/60A输出。两个300kHz的相同的30A功率级总共提供60A输出电流。MAX1544IC驱动两级电路,采用180°错相工作方式。该电源的输入范围7V至24V,机壳的最大额定环境温度为+60°C。
                           
图3.该降压型开关调节器中的MOSFET经由本文所述的迭代过程选出。板级设计者通常采用该类型的开关调节器驱动今天的高性能CPU。
同步整流器由两片并联的IRF6603MOSFET组成,组合器件的最大RDS(ON)在室温下为2.75mΩ,在+125°C(预定的TJ(HOT))下近似为4.13mΩ。在最大占空比94%,30A负载电流,以及4.13mΩ最大RDS(ON)时,这些并联MOSFET的功耗大约为3.5W。
提供2in²铜膜来耗散这些功率,总体ΘJA大约为18°C/W,该热阻值取自MOSFET的数据资料。组合MOSFET的温升将接近于+63°C,因此该设计应该能够工作在最高+60°C的环境温度下。
开关MOSFET由两只IRF6604MOSFET并联组成,组合器件的最大RDS(ON)在室温下为6.5mΩ,在+125°C(预定的TJ(HOT))下近似为9.75mΩ。组合后的CRSS为380pF。MAX1544的1Ω高边栅极驱动器可提供将近1.6A的驱动。
VIN=7V时,阻性损耗为1.63W,而开关损耗近似为0.105W。输入为VIN=24V时,阻性损耗为0.475W而开关损耗近似为1.23W。总损耗在各输入工作点大致相等,最坏情况(最低VIN)下的总损耗为1.74W。
28°C/W的ΘJA将产生+46°C的温升,允许工作于最高+80°C的环境温度。若环境温度高于封装的最大规定温度,设计人员应考虑减小用于MOSFET的覆铜面积,尽管该步骤不是必须的。
本例中的覆铜面积单独考虑了MOSFET的需求。如果还有其它器件向这个区域散热的话,可能还需要更多的覆铜面积。如果没有足够的空间增加覆铜,则可以降低总功耗,传递热量到低耗散区,或者采用主动的办法将热量移走。
热管理是大功率便携式设计中难度较大的领域之一。这种难度迫使我们有必要采用上述迭代过程。尽管该过程能够引领板级设计者靠近最终设计,但是还必须通过实验来最终确定设计流程是否足够精确。计算MOSFET的热性能,为它们提供足够的耗散途径,然后在实验室中检验这些计算,这样有助于获得一个健壮的热设计。
返回列表