所示)可使用两个单独的电感(或者由于电感的电压波形类似),因此还可以使用一个耦合电感,如图所示。因其体积和成本均小于两个单独的电感,耦合电感颇具吸引力。其存在的缺点是标准电感并非总是针对全部可能的应用进行优化。</SPAN >
图 1 SEPIC 转换器使用一个开关来升降输出电压
这种电路的电流和电压波形与连续电流模式 (CCM) 反向电路类似。开启 Q1 时,其利用耦合电感主级的输入电压,在电路中形成能量。关闭 Q1 时,电感的电压逆转,然后被钳制到输出电压。电容 C_AC 便为 SEPIC 与反向电路的差别所在;Q1 开启时,次级电感电流流过它然后接地。Q1 关闭时,主级电感电流流过C_AC,从而增加流经 D1 的输出电流。相比反向电路,这种拓扑的一个较大好处是 FET 和二极管电压均受到 C_AC 的钳制,并且电路中很少有振铃。这样,我们便可以选择使用更低的电压,并由此而产生更高功效的器件。
由于这种拓扑与反向拓扑类似,因此许多人会认为要求有一套紧密耦合的绕组。然而,情况却并非如此。图 2 显示了连续 SEPIC 的两个工作状态,其变压器已通过漏电感 (LL)、磁化电感 (LM) 和一个理想变压器 (T) 建模。经检查,漏电感的电压等于 C_AC 的电压。因此,较小值 C_AC 或者较小漏电感的大 AC 电压会形成较大的回路电流。较大的回路电流会降低转换器的效率和 EMI 性能,而这种情况是我们所不希望出现的。减少这种大回路电流的一种方法是增加耦合电容 (C_AC)。但是,这样做是以成本、尺寸和可靠性为代价的。一种更为精明的方法是增加漏电感,其在指定某个定制磁性组件的情况下可以很轻松地实现。
2a)MOSFET 开启:VLL = VC_AC - VIN = ?VC_AC(DC 部分删除)
2b) MOSFET关闭: VLL = VIN + VOUT - VC_AC - VOUT = ?VC_AC (DC 部分删除)
图 2a 和 2b SEPIC 转换器的两种工作状态。
漏电感的 AC 电压等于耦合电容电压。
有趣的是,极少的厂商已经认识到了这一事实,并且许多厂商已经针对 SEPIC 应用生产出了低漏电感的电感。另一方面,Coilcraft 拥有约 0.5 uH 漏电感的 47 uH MSD1260,同时还于最新开发出了这种设计的其他版本,其具有 10 uH 以上的漏电感,我们将在下次的《电源设计小贴士》中对其进行介绍,敬请期待。