Board logo

标题: 开关电源PCB电磁兼容性的建模分析 [打印本页]

作者: k10911    时间: 2012-11-20 14:38     标题: 开关电源PCB电磁兼容性的建模分析

开关电源的共模干扰和差模干扰对电路的影响是不同的,通常低频时差模噪声占主导地位,高频时共模噪声占主导地位,而且共模电流的辐射作用通常比差模电流的辐射作用要大得多,因此,区分电源中的差模干扰和共模干扰是很有必要的。

为了区分出差模干扰和共模干扰,我们首先需要对开关电源的基本耦合方式进行研究,在此基础上我们才能建立差模噪声电流和共模噪声电流的电路路径。开关电源的传导耦合主要有:

电路性传导耦合、电容性耦合、电感性耦合以及这几种耦合方式的混合。

1 共模和差模噪声路径模型

开关电源中由于高频变压器原副边绕组之间存在的耦合电容CW、功率管与散热器之间存在的杂散电容CK、功率管自身的寄生参数以及印制导线之间由于相互耦合而形成的互感、自感、互容、自容、阻抗等寄生参数而构成共模噪声和差模噪声通路,从而形成共模和差模传导干扰。在对功率开关器件、变压器以及印制导线的电阻、电感、电容的寄生参数模型进行分析的基础上,可获得变换器的噪声电流路径模型。

2 电路主要元器件的高频模型

功率开关管的内部寄生电感、电容影响到电路的高频性能,这些电容使得高频干扰漏电流流向金属基板,而且功率管与散热器之间存在着一个杂散电容CK ,出于安全的原因,散热器通常是接地的,这就提供了一条共模噪声通路。

在PWM变换器工作时,伴随着开关器件的工作,也相应产生了共模噪声。如图1 所示,对于半桥变换器,开关管Q1 的漏级电压始终为U1,源级电位随开关状态的改变而在0 和U1/2 之间变化;Q2 的源极电位始终为0,漏极电位在0 和U1/2之间变化。为使开关管和散热器能保持良好接触,往往在开关管底部与散热器之间加上绝缘垫片或者抹上导热性能良好的绝缘硅胶。这使得A 点对地之间相当于存在一个并联耦合电容CK。当开关管Q1、Q2 的状态发生改变,使A 点电位发生变化时,就会在CK 上产生噪声电流Ick,如图2 所示。该电流由散热器到达机壳,而机壳也即大地与主电源线存在耦合阻抗,形成图2中虚线所示的共模噪声通路。于是,共模噪声电流在地与主电源线的耦合阻抗Z 上产生压降,形成共模噪声。

开关电源的共模干扰和差模干扰对电路的影响是不同的,通常低频时差模噪声占主导地位,高频时共模噪声占主导地位,而且共模电流的辐射作用通常比差模电流的辐射作用要大得多,因此,区分电源中的差模干扰和共模干扰是很有必要的。

为了区分出差模干扰和共模干扰,我们首先需要对开关电源的基本耦合方式进行研究,在此基础上我们才能建立差模噪声电流和共模噪声电流的电路路径。开关电源的传导耦合主要有:

电路性传导耦合、电容性耦合、电感性耦合以及这几种耦合方式的混合。

1 共模和差模噪声路径模型

开关电源中由于高频变压器原副边绕组之间存在的耦合电容CW、功率管与散热器之间存在的杂散电容CK、功率管自身的寄生参数以及印制导线之间由于相互耦合而形成的互感、自感、互容、自容、阻抗等寄生参数而构成共模噪声和差模噪声通路,从而形成共模和差模传导干扰。在对功率开关器件、变压器以及印制导线的电阻、电感、电容的寄生参数模型进行分析的基础上,可获得变换器的噪声电流路径模型。

2 电路主要元器件的高频模型

功率开关管的内部寄生电感、电容影响到电路的高频性能,这些电容使得高频干扰漏电流流向金属基板,而且功率管与散热器之间存在着一个杂散电容CK ,出于安全的原因,散热器通常是接地的,这就提供了一条共模噪声通路。

在PWM变换器工作时,伴随着开关器件的工作,也相应产生了共模噪声。如图1 所示,对于半桥变换器,开关管Q1 的漏级电压始终为U1,源级电位随开关状态的改变而在0 和U1/2 之间变化;Q2 的源极电位始终为0,漏极电位在0 和U1/2之间变化。为使开关管和散热器能保持良好接触,往往在开关管底部与散热器之间加上绝缘垫片或者抹上导热性能良好的绝缘硅胶。这使得A 点对地之间相当于存在一个并联耦合电容CK。当开关管Q1、Q2 的状态发生改变,使A 点电位发生变化时,就会在CK 上产生噪声电流Ick,如图2 所示。该电流由散热器到达机壳,而机壳也即大地与主电源线存在耦合阻抗,形成图2中虚线所示的共模噪声通路。于是,共模噪声电流在地与主电源线的耦合阻抗Z 上产生压降,形成共模噪声。




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0