Board logo

标题: 基于双DSP硬件架构的固态开关控制系统设计 [打印本页]

作者: 520503    时间: 2013-2-18 19:11     标题: 基于双DSP硬件架构的固态开关控制系统设计

摘要:为解决电网供电电压跌落及短时断电的问题,实现了对负载的不间断供电,设计了基于双DSP和FPGA的固态转换开关(SSTS)控制系统。介绍了SSTS设备的工作原理,通过仿真论证了强制切换(MBB)控制策略及单相电压跌落检测算法的有效性和必要性。根据改进后的SSTS系统控制算法,通过对功能的层次化解析,建立了双DSP+FPGA控制系统架构,并简单介绍了各系统模块的实现方法。最后给出了380 V SSTS装置部分运行结果。实验结果表明,所采用的控制系统架构及控制策略是正确可行的。
关键词:固态转换开关;电压跌落检测;切换控制

1 引言
    SSTS是一种解决电压短时跌落的电力电子设备。随着电力电子器件的发展,采用可控电力电子器件取代机械开关,可实现高速投切,且设备寿命长,赋予了SSTS全新的意义。在此以晶闸管型固态开关装置为研究对象,首先在电磁暂态仿真平台PSCAD/EMTDC建立了10 kV/1 MW中压SSTS系统模型。通过仿真对现有电压跌落检测算法以及切换控制策略进行了研究和改进。在仿真基础上,对SSTS控制系统功能进行了梳理和层次化解析,提出基于双DSP+FPGA的硬件控制架构。
    该控制平台可实现多达24路的模拟信号同步实时采样。通过将系统测试、控制功能在多处理器中分工合作,有效提高了系统运算速度,减少了软件开发复杂性,提高了系统的可靠性与稳定性。该控制平台在各种智能电网电力电子测控设备上具有广泛的应用前景。

2 SSTS原理与系统仿真
   
SSTS系统结构框图如图1所示。


    主、备用侧电源分别通过晶闸管连接到负载。在正常工作时,负载接入主侧电源工作运行,当系统监测到主侧电源有电压跌落、过流或过温故障时,系统自动将负载切换到备用侧电源。SSTS控制系统的研究重点在于电压跌落检测算法和切换控制策略。为研究这些问题,在电磁暂态仿真软件PSCAD/EMTDC中建立了10 kV/1 MW中压SSTS的系统模型并根据系统故障种类和负载种类的不同,进行了全面仿真。负载种类包括:容性负载、阻性负载、感性负载和变压器型负载。电压跌落故障包括:三相短路、两相短路、两相接地短路、单相接地短路、单相跌落30%和三相跌落30%等。
2.1 系统切换控制策略仿真
   
SSTS切换控制策略主要包括电流过零切换(BBM)和MBB两种,其切换控制流程如图2所示。通过仿真发现,当系统负载为功率因数较低的阻感负载或变压器时,若SSTS之前发生短路故障,系统电流过零非常缓慢,大大影响系统切换速度。由仿真结果可知,当系统负载功率因数为0.3,呈现感性时,系统电流过零耗时60 ms。当系统负载端连有10 kV/400 V变压器时,由于变压器励磁电感作用,电流过零耗时超过了4 s。为保证系统在20 ms内完成电源切换,必须采用MBB控制策略。


    仿真还发现,若短路故障发生在负载侧,此时将故障负载投切到备用电源,会给备用电源侧线路带来电流冲击,造成备用电源线路及其设备损坏。因此应对故障位置加以判断。当主侧发生电压跌落且伴有较大故障电流时,说明故障位置在SSTS后,此时不宜切入备用侧电源,可按照继电保护重合闸的方案进行处理。





欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0