Board logo

标题: 光纤传感空分复用下多点温度与应力的监测显示 [打印本页]

作者: forsuccess    时间: 2013-3-5 21:05     标题: 光纤传感空分复用下多点温度与应力的监测显示

摘要:多参量多点实时监测显示是传感研究领域的一项重要技术。以光纤Fabry-Perot(F-P)腔与光纤Bragg光栅(FBG)传感器的串联复用结构为单元构建空分复用(SDM)系统,设计了温度、应力多点实时显示的方案。由FPGA构建的SOPC与NiosⅡ完成对多监测点的数据采集,由VB串口通信接收FPGA存储器存储的采集数据,再把此数据由高斯曲线拟合方程处理得到温度和应力的参数值,最后用VB实现监测显示。结果表明F-P腔与FBG串联能有效克服温度与应力的交叉敏感,FPGA结合VB能很方便的实现多参量多点的实时监测显示。
关键词:光纤传感;空分复用;温度与应力显示;FPGA;VB

0 引言
    近年来,光纤光栅传感技术的应用在各行各业中得到了快速的发展。人们对待测物理量在精度、性能、容量以及多参数等方面提出了更高的要求。这极大地促进了光纤光栅传感复用类型相关理论和技术的研究,而解调显示技术正是其中的一个重要环节,现常以ARM,DSP,FP GA等芯片为核心控制多路数据信号的采集、存储和处理,并用LabVIEW,VB,Matlab及其混合使用等做界面显示处理。
    文中FPGA与VB结合实现多参量的监测显示,得益于FPGA高度集成、内部资源丰富、功能强大、时序控制精确、支持并行处理、编程灵活等优点;VB简洁易懂、界面设计简单。
    本文主要完成了对多监测点双参数监控显示的研究。FBG能通过反射或透射波长实现对温度的测量;F-P可用做可调谐F-P腔、滤波器、传感器等,调节腔长与电压的关系能实现对应力解调。故首先设计了一种基于FBG与F-P腔传感器串联复用,并对其进行空分复用,构建成能实现多监测点双参数高精度解调的系统。分析F-P腔与FBG串联复用的光谱,可知能实现待测信号的高精度解调:即F-P腔长(应力)和FBG反射中心波长(温度)的同时测量。并使用FBG和F-P腔分别对温度与应力进行测量,进而与F-P腔和FBG串联复用所得结果进行比较,通过实验对该方法进行了验证。而空分复用就能实现多个监测点的双参数高精度解调。此后由FPGA构建的SOPC与NiosⅡ完成对多监测点双参数的数据采集;由VB串口通信进行数据接收,并把采集到的数据带入高斯曲线拟合方程中,求出具体的温度与应力,并用VB界面实现了监控显示。

1 原理分析与理论模型
1.1 FBG的应变和温度响应
   
根据光纤耦合模型理论可知,满足Bragg条件的反射光波长为:
    λB=2neffΛ      (1)
    式中:Λ为光栅周期;neff为有效折射率。当Λ和neff因外界同时引起较小的变化ΔΛ和Δneff时,由Bragg条件可知,反射波长会发生移位ΔλB。ΔλB可表示为:
    △λB=2△neffΛ+2neffΔΛ     (2)
    若温度、应变共同作用时,产生的Bragg波长位移ΔλB,用线性关系可表示为:
   
    式中:α是光纤材料的热膨胀系数;△T是温度变化量;pmn为材料的光弹系数;v2,v3为泊松比。由式(3)可知,由单一FBG在测得中心波长移动ΔλB时,还需知道温度才能求出应变,这就是温度与应变的交叉敏感问题。当应变和温度同时发生变化时,光纤光栅无法区分由二者独自引起的波长变化,测量其中一个量时,总会受到另一个量的影响。为解决交叉敏感问题,人们提出了多种方法,其中串联复用传感就是一种有效的方法。如光纤布拉格光栅和长周期光栅结合的传感器系统,该系统能实现油气井下应力和温度的同时测量。本文研究F-P腔与FBG串联复用传感,能消除交叉敏感影响,并对该串联复用传感器进行空分复用实行多点监测,最终用VB编码实现数值界面显示。
1.2 F-P腔与FBG串联复用传感器的解复用
    因为F-P腔有温度-压力交叉敏感性能实现对温度的补偿,能使测量精度提高,故可采用F-P腔与FBG串联复用传感器的解复用。其结构如图1所示。


    原理阐述:光从光纤左端入射Iin,进入FBG与F-P腔串联复用的结构中,首先经过FBG温度传感器,此时Bragg反射波长附近的一部分光I1被反射,而透射光I2入射到F-P腔传感器,得到F-P反射光谱为一低反衬度的F-P腔干涉光谱I3,I3再通过FBG传感器,其透射光部分为I4。与之前的FBG传感器反射光I1相叠加形成最终的输出光谱Iout。其数学表达式为:
    Iout=I1+I4=Iin[fFBG+(1-fFBG)2fF-P]      (4)
    式中:fFBG=R·exp[-(λ-λB)2/c2],即用高斯分布来表示FBG的反射谱,R为光栅峰值反射率;λB为Bragg反射中心波长;c值的大小用于表征反射峰的宽度;fF-P=2r[1+cos(4πL/λ+π)],其中r为光纤端面反射率。L为F-P腔的腔长,λ为光波长。
    由式(4)可知,由传感器返回的光谱并不是FBG传感器与F-P腔传感器各自反射光谱的简单叠加。此时,若直接采集光谱信号中的FBG反射峰值波长作为FBG传感器的温度解调信号,将导致结果发生偏差,影响温度测量精度。为了得到精确的FBG反射光谱信号,将式(4)展开成为关于fFBG的一元二次方程:
   
    解此方程,可得精确的FBG反射光谱,进而通过对解出的光谱峰值部分进行高斯拟合,求解出中心位置,即可解出FBG的中心波长。式(5)中Iout和Iin是可直接测量得到的光谱分布数据,fF-P通过F-P腔反射光谱的交叉相关解调算法得到。消除FBG对F-P腔解调的影响只需找到FBG的粗略峰值位置,将FBG峰值部分光谱数据从光谱中扣除。由于FBG光谱宽度远小于宽谱光源宽度,而交叉相关计算对于小范围光谱数据的缺失不敏感,因而不影响F-P腔解调结果的精度。   将相关解调计算得到的fF-P带入式(5),得到方程的解为:


    在实际解调过程中,可取测量得到的原始FBG光谱峰值附近一定范围的光谱数据做上述运算,得到分离后FBG的新光谱并进行高斯拟合,即可得到精确的FBG的中心波长位置。故该串联复用能实现双参数解调。

2 解调研究
2.1 FBG与F-P腔传感串联复用进行空分复用的解调
   
分析FBG与F-P腔传感串联复用可知,能同时实现对温度和应变的高精度测量。通过对该串联复用系统进行空分复用,能实现对多监测点的双参数测量。以可调谐窄带激光F-P腔做光源,可使各分路的光功率提高,提高系统的信噪比,解调范围可控制。为此构建一个能同时测量温度和应变,并且能大幅度提高精确度的空分复用系统。对该空分复用系统各路光纤进行解调设计的原理如图2所示。


    首先用FPGA控制多路选择开关,选择具体的某路光纤。进入到光电探测器中,将光信号转换为模拟电信号并用A/D转换为数字信号。采集完数据并存储于FPGA存储器中,再进行下一路光纤数据的采集,如此循环,在一给定的时序内完成所有光路的数据采集,并将数据用数组存储。最终通过对FPGA进行配置与编程,实现对存储器的读写转换,用RS 232数据线通过VB串口通信连接到计算机中进行处理,实现对温度/应力的显示。FPGA的I/O端口可扩展为多路开关和A/D转换,进一步能实现对更多路的监测解调。
2.2 数值界面监控显示
2.2.1 软核配置与数据采集
   
以FPGA开发板EP2C8Q208为硬件平台,在QuartusⅡ11.0的SOPC Builder里,设计NiosⅡ软核处理器及功能模块。直接调用Altera提供的IP核,功能模块IP核经配置后,即可加入到系统中。此处添加的模块有CPU,SDRAM,FLASH,PIO,SPI,M4KRAM,UART,DS等。其连接图如图3所示。


    PIO模块主要用来实现A/D的配置和控制;RAM为缓冲存储块,设置为双端口RAM,一个端口写,另一个端口读;DS时钟模块进行时序控制;SDRAM随机存储器;FLASH程序下载固化时用;NiosⅡ软件编程控制模块,通过各模块的配置以及NiosⅡ的程序来寻址IP核,完成数据的采集;以RS 232串口线完成FPGA与PC的连接,并由UART与编写的VB串口实现通信。
2.2.2 数据串口通信
   
主要是将NiosⅡIDE main()里的数组寻址RAM模块读来的数据,传送到VB串口接收窗口中,以NiosⅡ软核处理器中的UART(RS 232)实现数据与PC通信。此处需在PC上用VB编写一个串口通信端口来接收RAM里的数据。注意UART与VB接收端口的波特率必须一致,否则不能成功通信。以下为VB处理代码:
    (1)VB串口端口通信,由mscomm控件来完成通信,其初始化为:
   
    (3)TxtReceive接收文本的数据,每过5 s刷新数据,并继续接收由FPGA采集传来的数据。由timer控件处理,其属性Enabled为True,Interval为5 000,timer()事件为Form1.Text1.Text=串口调试软件.TxtReceive.Text。确保引用接收到的数据是实时正确的。2.2.3 VB界面显示
将VB串口通信接收端接收到的数据,经过高斯曲线拟合方程处理,求出对应的温度和应力。由于条件限制,实验中采用的FBG中心波长均为1 550 nm,腔长为15 μm的F-P腔。以第1路光纤为例,实验测得的参数由Matlab进行高斯曲线拟合结果如图4所示:图4(a)为F-P腔长与应力变化关系曲线,在F-P腔长为8.5 μm范围内对应着10-3ε,拟合的高斯方程可表示为:
    F=(L-15)×1 000/85            (7)
    式中:L代表所测的F-P腔长;F代表应力。故由测得的腔长L可求出F。


    图4(b)为FBG反射中心波长与温度变化关系,拟合的高斯方程为:
    λB=9.565T+1 550.121 75      (8)
    式中:T代表所测温度;λB代表FBG反射中心波长。故由测得反射中心波长λB可求出T。最后通过VB代码编写实现所测温度与应力的界面监控显示。
    这里以引用VB串口接收8路通道采集的数据为例,双参数显示的代码如下:

    由FBG0采集的数据,用Matlab高斯曲线拟合通过方程处理求出T/F。

    由FBG1采集的数据,用Matlab高斯曲线拟合通过方程处理求出T/F。

    多路解调双参数T/F数值监控显示的实验结果如图5所示。



3 结语
   
理论与实验结果分析可知,FBG与F-P腔串联复用传感器可以消除温度与应力的交叉敏感,能实现对监测点温度与应力的高精度解调,同时由空分复用可实现多个监测点的同时测量。系统设计采用FPGA+NiosⅡ完成数据的采集与VB通信的处理。实验结果表明,该系统性能可靠,准确的对温度与应力实现实时监控,且运行稳定。而FPGA的预留I/O端口可作为扩展端口使用,以便实现更多监测点的测量。当实时性达到一定精度后,该方案就能满足大型工程的应用需求,如在航空航天的卫星发射时,对其各子系统温度与应力的实时动态监控;以及对大型机械厂房温压的实时动态监控等等。

作者: TLP291    时间: 2013-3-14 13:47


QQ:2355293390  TEL:0755-82767111
潮光光耦网http://www.tosharp.cn




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0