2.2 直流可调电源设计
电流调节器ACR的输出c U 是可调直流电源的输入值,首先选定ACR的输出控制限幅值, 对应于直流电源最大输出电压,稳态时有。根据直流电动机的稳态电压平衡方程:
U = E + RI = C n + RI ,为了保证额定转速nN时,直流电源仍能提供最大电枢电流 ,应满足下式,并留有一定裕量。
3.可逆控制的主要问题
无论是采用改变电枢电压的极性或改变励磁磁通的方向来改变直流电动机的转向,都需要其供电电源能够输出极性可变的直流电压。
基于PWM控制的H型可逆直流电源,其主电路拓扑结构与控制原理如图1-2所示,其主电路开关器件可采用IGBT、Power MOSFET以及智能功率模块IPM,常应用于中、小功率的可逆直流调速系统(如图1所示)。
图1-a绘出了H型可逆脉宽调速系统的基本原理图,由4个电力电子开关器件1 4 S ? S和续流二极管构成桥式电路拓扑。H型可逆PWM变换器的控制方式有:双极式控制、单极式控制和受限单极式控制等。
现以双极式控制为例,说明H型可逆PWM变换器的工作原理。
1)正向运行(此期间2S 和3 S 始终保持断开)第1阶段,在0 on ≤ t ≤ t 期间, 1 4 S和S 同时导通,电动机M的电枢两端承受电压+ d0 U ,电流d i 正向上升;第2阶段,在on t ≤ t ≤ T 期间, 1 4 S和S 断开, 续流,电动机M的电枢两端承受电压- ,电流下降;但由于平均电压高于电动机的反电动势E,电动机正向电动运行,其波形如图1-b.
2)反向运行(在此期间1 4 S和S 始终保持断开)
第1阶段,在0 on ≤ t ≤ t 期间, S 2 和S3 断开,通过续流,电动机M的电枢两端承受电压+ ,电流- 沿反方向下降;第2阶段,在on t ≤ t ≤ T期间, S2 和S 3 同时导通,电动机M的电枢两端承受电压- ,电流- 沿反方向上升;由于平均电压|- |高于电动机的反电动势|-E|,电动机反向电动运行,其波形如图1-c.改变两组开关器件导通的时间,也就改变了电压脉冲的宽度。
如果on t 表示1 4 S和S 导通的时间,开关周期T和占空比的定义和上面相同,则电动机电枢两端电压平均值为: