(14)
(15)
(16)
(17)
(18)
总输出噪声为:(19)
在输出端添加一个带宽为34 kHz的单极点RC滤波器可降低噪声,系统总噪声为460 μVrms。由于增益较高,fp2 更接近信号带宽,因此降噪效果不如使用1 MΩ增益那样显著。可编程增益跨阻放大器
图9显示了一个可编程增益跨阻放大器。这是一个很好的概念设计,但模拟开关的导通电阻和漏电流会引入误差。导通电阻引起电压和温度相关的增益误差,漏电流引起失调误差,特别是在高温时。
图9. 可编程跨阻放大器
图10所示电路在每个跨阻分支中使用两个开关,从而避免了上述问题。虽然它需要的开关数量加倍,但左侧开关的导通电阻在反馈环路内,因此输出电压仅取决于通过所选电阻的电流。右侧开关看似输出阻抗,如果放大器驱动ADC驱动器等高阻抗负载,它产生的误差可忽略不计。
图10. 带开尔文开关的可编程增益跨阻放大器
图10电路适用于DC和低频,但在关断状态下,开关上的寄生电容是另一大难题。这些寄生电容在图10中标记为Cp,将未使用的反馈路径连接到输出端,因此会降低整体带宽。图11显示这些电容最终如何连接到未选择的增益分支,从而将跨阻增益变为选定增益与未选定增益衰减版本的并联组合。
图11. 包括开关寄生电容的总反馈电容
根据所需的带宽和反馈电阻,寄生电容可能导致放大器的预期行为与实测行为大不相同。例如,假设图11中的放大器使用与上一电路相同的1 MΩ和10 MΩ值,相应的电容分别为4.7 pF和0.47 pF,我们选择10 MΩ增益。如果各开关具有大约0.5 pF的馈通电容,考虑寄生路径,理想带宽与实际带宽的差异如图12所示。
图12. 包括寄生开关电容的跨阻增益
解决该问题的一种方法是将各开关替换为两个串联开关。这样,寄生电容将减半,但需要更多元件。图13显示了这种方法。
图13. 增加串联开关以降低总寄生电容
如果应用需要更高的带宽,第三种方法是利用SPDT开关将每个未使用的输入端连接到地。虽然各断开开关的寄生电容仍在电路内,但图14b显示了各寄生电容看起来是如何从运算放大器的输出端连接到地,或从未使用反馈分支的末端连接到地。从放大器输出端到地的电容常常导致电路不稳定和响铃振荡,但在这种情况下,总寄生电容仅有几pF,不会对输出端产生严重影响。从反相输入端到地的寄生电容会与光电二极管的分流电容和运算放大器自有的输入电容相加,与光电二极管的大分流电容相比,增加量微乎其微。假设各开关有0.5 pF的馈通电容,运算放大器输出端将增加2 pF负载,大部分运算放大器都能毫无困难地驱动。
图14. 使用SPDT开关的可编程TIA
但是,像任何事情一样,图14所示的方法也有缺点。它更复杂,对于两个以上的增益可能难以实现。此外,反馈环路中的两个开关会引入直流误差和失真。根据反馈电阻的值不同,额外带宽可能很重要,足以保证这种小误差不影响电路工作。例如,对于1 MΩ反馈电阻,ADG633的导通电阻在室温下产生大约50 ppm的增益误差和5 μV的失调误差。但是,如果应用要求最高带宽,那么可以说这是一个缺点。欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) | Powered by Discuz! 7.0.0 |