Board logo

标题: 常见企业级SSD故障电源可靠性分析详解 [打印本页]

作者: forsuccess    时间: 2014-8-15 23:52     标题: 常见企业级SSD故障电源可靠性分析详解

SSD技术概览
  固态驱动器(SSD)是采用固态半导体存储器(如NAND闪存)而非传统硬盘驱动器(HDD)中磁性元件来永久存储信息的一种数据存储设备。由于数据可随机存取,不像HDD那样受磁盘转动和读写磁头同步的影响,因此能加快SSD的输入/输出(I/O)性能。此外,HDD移动磁头到准确位置也要花上几毫秒。
  SSD的基本架构包括SSD控制器/处理器、存储器控制器、接口控制器、NAND闪存存储器器件组、SDRAM缓存和接口连接器。
  SSD没有移动部件,大小与HDD相仿,而且支持标准的HDD接口,包括串行高级技术附件(SATA)、串行连接SCSI(SAS)、光纤通道(FC)等。由于不采用移动部件,因此SSD在更长的工作时间内能保持更高的可靠性。
  SSD还有一大优势,就是相对于HDD而言能显着降低功耗。随着存储器容量的提升和价格的下降,SSD越来越成为富有吸引力的HDD替代方案。由于SSD速度更快,因此单位IOPS(每秒输入/输出操作)的成本低得多。随着时间的推移,SSD在单位存储容量(每千兆字节)的成本方面也体现出更高的优势。分析人士预测SSD价格将继续稳步下降,从而进一步推进该技术在不同细分市场中的应用。
  企业级SSD
  企业级SSD是当前非易失性存储的最高级别,在读写性能、散热和能耗方面都较其它HDD替代方案有了长足的进步。SSD作为存储网络加速器可让企业应用大受裨益,其中包括银行和金融应用、在线事务处理、前端Web服务器、搜索引擎、信息传递和高性能计算等。
  由于企业级SSD与HDD插件兼容并支持标准的磁盘接口,因此能安装在当前使用企业HDD的大多数服务器平台和磁盘阵列中。面向企业级存储设备的主要性能参数是随机读写IOPS(见表1)。

  表1
  企业级SSD可提供大容量存储空间、高性能和高可靠性等规范,专门面向企业存储市场,用于支持应用加速。
  图1显示了SATA接口企业级SSD的基本方框图。其它可用接口还包括与HDD相兼容的串行连接SCSI(SAS)、光纤通道(FC)和PCIe等。
  图1:企业级SSD基本方框图
  以下各节将探讨企业级SSD对SDRAM缓存的需求以及采用超级电容或钽电容组在断电时备份SDRAM缓存数据关键部分的当前架构,如图1所示。此外,我们还将讨论这种实施方案的可靠性问题,并探讨非易失性存储器解决方案(nvSRAM)作为出色替代方案的使用问题。
  对于SDRAM缓存的需求
  NAND闪存存储器是企业级SSD的基本存储元件。由于架构问题,NAND闪存存储器的主要局限性在于其写入速度无法匹配企业存储系统的数据传输速度要求。由于数据传输速度超过了NAND闪存的写入速度,因此企业级SSD的写入性能可通过高速数据缓存加以提高。企业级SSD通常采用SDRAM作为缓存,保存并处理从存储系统控制器接收到的数据流有关部分。此外,SDRAM也可保存企业级SSD元数据的工作副本,其中一部分必须根据用于写入数据的块的分配情况加以修改。元数据通常包括平均抹写储存区块(wear leveling)、错误校正、转换表、物理/逻辑地址映射、文件分配表等信息,并且需要每个文件的多次写入操作。元数据要求随着企业级SSD容量的增长而增长。
  SDRAM缓存数据和元数据的电源故障备份
  在企业存储系统的数据传输操作中,比如说读写企业级SSD闪存存储器的某个位置,包括存储系统主机、SSD控制器、SDRAM缓存和NAND闪存存储器等所有相关元件的电源系统必须有效工作,从而确保成功的事务处理。但是,电子系统很容易受到电压峰值、断电、浪涌、限电等供电中断问题的影响,这可能导致潜在的数据丢失或损坏:
  ●传输到闪存存储器的缓存数据
  ●元数据
  企业级SSD不能丢失已向存储系统控制器报告为“提交给NAND闪存”的数据。企业级SAS/SATA市场制定了热插拔规范,要求任何时候都不能丢失“被提交”的数据,即使是突然断电也不行。比如说热插拔维护环节中操作人员误操作卸下了错误的驱动器。
  企业级SSD控制器向存储系统控制器报告数据接收状态有两种机制。企业级SSD可工作在“写通”模式下,也就是说只有在数据和修改的元数据安全地“提交”到NAND闪存存储器时,企业级SSD控制器才会通知存储系统控制器数据和修改的元数据已经“被提交”.
  此外,企业级SSD也能工作在“回写”模式下,也就是某些数据流和/或相应修改的元数据还没有“提交”到闪存,但已经向存储系统控制器报告为“被提交”.任何向存储系统控制器报告为“被提交”的数据在电源故障情况下都应确保非易失性。企业级SSD缓存中的任何其它数据在电源故障情况下假定为丢失。“回写”模式相对于“写通”模式而言能大幅提升随机IOPS性能,因此更受高随机IOPS驱动器的青睐。
  为了确保“回写”实施方案的正常运行,企业级SSD采用电源故障检测电路监控电源电压,如果电压降到预设阈值以下,就发送信号给SSD控制器。此外,我们还实施了二级电压保持电路,确保驱动器在足够长的时间内有足够的电力,能支持SDRAM缓存数据的备份。当电源中断时,二级电压源在所需的持续时间内提供所需的电力,从而从SDRAM向NAND闪存传输内容。以下图2显示了用于企业级SSD的典型电源故障检测电路方框图。
  二级电压源可以是高容量超级电容,也可以是一组分立钽电容。
  超级电容
  超级电容器(supercapacitor或ultracapacitor,抑或为双电层电容器EDLC)是相对于任何其它可用电容类型能够显着提高能量密度的电容,并且可作为电池备份应用中可靠的电池替代产品。
  但是,超级电容器存在可靠性问题,已知其在长期可靠性方面存在不足,这一点跟铝电解电容器比较相像。超级电容器的使用寿命有限,因为经过一段时间在工作温度下电解质会从元件挥发,从而造成元件磨损。超级电容器的性能会随着电解质的损失而逐渐下降,最后几乎没有什么警告甚至毫无警告就会彻底失效。此外,工作电压越高、工作和非工作温度环境越差,电解质损失率也就越高。环境工作温度每升高10℃,超级电容器的预期使用寿命就要削减大约一半。
  超级电容器故障模式包括:
  ●电化学分解压力过大造成单元开裂。
  ●电压和温度在单元内部生成气压,随时间推移慢慢增大,压力达到一定极限,就会造成机械扩散通常是外壳槽开裂。
  长期在较高工作温度下使用,电解质的水分蒸发,等效串联电阻(ESR)会增加。基本故障模式就是ESR增加的开裂模式。所有超级电容器都带有警告信息:“使用此电容器时应在设计中采用适当的安全措施,包括冗余和保护措施等。”
  分立电容器
  分立电容器组可提供更可靠的选择,但需要更小心的设计。基于分立电容器的保持电路采用并行连接的分立电容器组。所用的分立电容器可以是铝电容、钽电容或铌电容。它不像超级电容那么小型化,分立解决方案的电容尺寸比会占据大量板卡空间。此外,我们知道钽电容对短路和冒烟故障比较敏感。




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0