如果假设信号包含单一频率f1,或假设信号更复杂,分布在频段f1至f2中,则我们便可分析调制器的输出频谱,如下图所示。假设完美平衡的调制器不存在信号泄漏、载波泄漏或失真,则输出不含输入项、载波项和杂散项。输入以黑色表示(或在输出图中以浅灰色表示,哪怕实际上并不存在)。
图2显示输入——位于f1至f2频段内的信号,以及频率为ffc的载波。乘法器不含下列奇次载波谐波:1/3(3fc)、1/5(5fc)、1/7(7fc)…,以虚线表示。请注意,小数1/3、1/5和1/7表示幅度,而非频率。
图2.输入频谱,显示信号输入、载波和奇次载波谐波
图3.使用LPF的乘法器或调制器输出频谱
图4.未经滤波处理的调制器输出频谱
若信号频带( f1至f2)位于奈奎斯特频带(直流至fc/2)内,则截止频率高于2fc的LPF将使调制器具有与乘法器相同的输出频谱。若信号频率高于奈奎斯特频率,则情况更复杂。
图5显示信号频带正好低于fc时将发生的情况。依然有可能分离谐波项和基波项,但此时需使用具有陡峭滚降特性的LPF。
图6显示由于fc位于信号通带内,谐波项叠加(3fc - f1) < ( fc + f1),因此基波项不再能够通过LPF与谐波项分离。所需信号此时必须通过带通滤波器(BPF)进行选择。
所以,虽然调制器在大部分变频应用中优于线性乘法器,但设计实际系统时必须考虑到它们的谐波项。
图5. 信号大于fc/2时的输出频谱
图6. 信号超过fc时的输出频谱