图1a:无线功率传输中发送器-接收器对原理。
图1b:图1a所示发送器-接收器对的等效电路。
使用两组电极或极板就可以通过静电感应实现能量的传输。充电器或“发送器”和便携式设备或“接收器”用来有效地在组成电容的合适尺寸金属表面间实现纵向的准静电耦合。其中驱动电极或主动电极要比另外一个电极小,上面施加的电压较高,另外一个电极则是被动电极,尺寸较长,上面的电压较低。当然正常情况下,电容传输的能量是很小的,这与电极面积小有很大的关系。因此,为了满足给消费设备充电所需的功率水平(例如从5W至25W),需要增加电极尺寸和耦合的电压值,具体取决于实际的配置。图2a:电容传输充电器框图。
图2b表明,对于一个满足EMI兼容要求的10W充电器来说,发送至接收电容耦合过程中存在电压步升和步降现象。采用模块化架构的设计概念允许装置制造商将模块用作黑盒子,从而方便发送器和接收器的集成。发送器设计覆盖到电源的链路、无线能量传输的控制以及根据位置灵活性目标对任何外形的主动耦合电极的控制。在接收器侧,电池接口决定了设计如何从主动耦合电极区域通过下变频模块正确地接收功率。由于便携式设备中使用的电池种类非常广泛,所以电路接口的标准化设计代表着向非常方便的设计迈出了一大步,同时也要考虑到更具挑战性的概念,比如更快的充电速度。主要得益于欧盟委员会持续施加的压力,微型USB 5V充电接口正在成为欧洲所有移动手机的标准。图2b:电压步升和步降是10W充电器中发送至接收电容耦合过程的一部分。
与感应方法相比,使用准静电传输的关键优势之一是,待充设备在充电基座(或充电托盘)上的位置要求不是那么严格。通过x-y(表面)方向的精心设计,当接收器远离发送源时,仍能保持高效率且曲线相对平坦的能量传输,对任何设计(即使是有线充电器)来说效率典型值为80%左右,因此具有非常高的位置容差性能,而z(高度)仍然是最具挑战性的设计参数。欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) | Powered by Discuz! 7.0.0 |