标题:
基于TPS2491的热插拔保护电路设计
[打印本页]
作者:
porereading
时间:
2014-11-22 11:07
标题:
基于TPS2491的热插拔保护电路设计
文章对主流热插拔控制策略进行了比较分析,在介绍热插拔控制器TPS2491功能结构后,以24V电源背板总线数据采集卡为设计实例,详细介绍了基于TPS2491进行热插拔保护电路的设计过程,并对设计电路进行了测试验证,验证结果表明设计电路可有效抑制热插拔过程中的浪涌电流。
在工业控制现场PLC/DCS、刀片式服务器和冗余存储磁盘阵列(RAID)等高可用性系统,需要在整个使用生命周期内具有接近零的停机率。如果这种系统的一个部件发生了故障或需要升级,它必须在不中断系统其余部分的情况下进行替换,在系统维持运转的情况下,发生故障的板卡被移除,替换板卡被插入,被称为热插拔(Hot Swap)。
任何一个板卡都具有一定的负载电容,当板卡插入正常工作背板时,背板电源将使用较大的瞬时电流对插入板卡负载电容充电;当板卡从正常工作背板拔出时,由于板卡上的负载电容放电,在板卡与背板之间会形成一条低阻通路,也将产生较大的瞬时电流。浪涌现象会导致背板电源瞬时跌落,造成系统意外复位,甚至损坏接口电路,对于热插拔保护电路的研究将成为背板结构设备推广应用的关键。
1控制策略比较
1.1交错引脚法
“交错引脚法”也称为“预充电引脚法”,是一种最基本的热插拔浪涌电流控制方案,从物理结构上引入一长、一短两组交错电源引脚,在长电源引脚上串联了一个预充电电阻。板卡插入背板时,长电源引脚首先接触到电源,通过预充电电阻为插入板卡负载电容充电,并进行滤波和充电电流限制,板卡将要完全插入时,短电源引脚接入电源,从而旁路连接在长电源引脚的预充电电阻,为插入板卡供电提供一个低阻通道,信号引脚在插入板卡的最后时刻接入。板卡从背板拔出时,控制过程正好相反,长电源引脚最后与背板分离,通过预充电电阻为板卡负载电容放电。
交错引脚法不能控制负载电容的充电速率,预充电电阻的选择必须权衡预充电流和浪涌电流,如果电阻选择不合理,会影响系统工作。交错引脚方案需要一个特殊的连接器,这将会给选型设计带来一定的困难。
1.2热敏电阻法
热敏电阻法采用一个负温度系数(NTC)热敏电阻配合一个外部MOSFET使用,其工作原理是:NTC热敏电阻置于功率MOSFET尽可能近,热敏电阻上的温度与功率MOSFET外壳的温度直接成正比,控制MOSFET栅极电压控制器的开关门限输入电平与热敏电阻上的温度成反比。板卡在背板上进行热插拔时,MOSFET在瞬时浪涌电流的作用下温度升高,NTC热敏电阻上的温度随着升高,栅极电压控制器开关门限电平下降,来达到对板卡热插拔时浪涌电流控制。
采用热敏电阻法时,一个关键的问题是,当板卡连续反复插拔时,热敏电阻可能没有足够的冷却时间,从而在随后的热插拔事件中不能有效限制浪涌电流。同时需要考虑NTC热敏电阻的反作用时间引起的长期可靠性问题,板卡环境温度及热敏电阻自身因素对可靠性设计带来的问题。
1.3热插拔控制器
热插拔控制器是当前最好的热插拔解决方案,它在单芯片内集成了过压和欠压保护、过载时利用恒流源实现有源电流限制、电源电压跌落之前断开故障负载、利用外部FET构成“理想二极管”提供反向电流保护以及发生负载故障后自动重启等功能。此外,新一代热插拔控制器集成了全面的模拟和数字功能,在板卡插入并完全上电后,可连续监测电源电压、电流、功率以及器件温度,实时提供短路和过流保护,并且可以识别故障板卡,在系统完全失效或意外关闭之前撤掉故障板卡。热插拔控制器可有效控制热插拔过程中的浪涌电流,并在系统正常运行后提供过流和负载瞬变保护,降低了系统失效点,保证了可热插拔系统的长期可靠运行,热插拔控制器应用示意图如图1所示。
图1 热插拔控制器应用示意图
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0