电路中用到微处理器S3C44B0引脚PC0,PC1,PC2给驱动电路分别输出使能,正反转,时钟信号,通过控制输出脉冲的间隔可以控制电机转动的速率,而输出脉冲个数可控制步进电机走动的步数,达到控制频率计腔体位置目的。电路输出端口A, A, B, B接二相步进电机对应输入端子。
3.3.3 检波电流I/V转换及放大电路
检波晶体的作用是将微波微弱信号转换成直流信号。故可观察检波电流是否出现“吸收波谷”来判断腔体是否到达谐振位置。本系统将检波电流经过处理之后传送到上位机的LabVIEW界面显示,观察是否到谐振位置。
由于微波信号在传输过程中受到外部干扰的噪声,线路的噪声,元器件的噪声等等,因此需要滤波电路来滤除这些干扰信号。由于处理器对信号的采集速率比较低,所以本系统采用了时间常数比较大的由R418和C409构成的低通滤波器。其截止频率为f p =30Hz有利于滤除电路中的尖峰噪声。电路采用两级运放,第一级为I/V转换,第二级为电压反相放大。调节可变衰减器,电机走完全程,观察到检波电流最大值为50.9μ A,因此电路中RF4=1K,R416=1K,RF5=45K,由Vout1=-RF4*I知,经过第一级I/V转换之后最大电压为50.9mV,再经过放大,最终输出电压最大为2.291V,满足S3C44B0的A/D转换输入要求。
限于本信号源频率及谐振式频率计测量范围的影响,本系统只能在8.48GHz和9.9GHz范围内测量。因此从套筒的起始位置9.9mm(对应于频率8 . 4 8 G H z ),截止位置0 . 6 3 m m (对应于频率9.9GHz),其全长为9.9mm-0.63mm=9.27mm.由于电机带动套筒每步的距离非常小,因此不能直接测量步进电机一步的距离,利用步进电机没有累计误差的特点,采用步进电机走动180步,测出套筒刻度前后位置差,得出步进电机带动套筒每一步移动平均距离为0.005mm.手工测出频率与刻度的42组数据点,利用MATLAB拟合出图5-1所示曲线。用MATLAB拟合出频率f 与刻度L 线性关系函数为f = ?0.1456* L + 9.9917(0.63mm ≤ L ≤ 9.9mm)。由于电机每步带动套筒移动0.005mm,起始位置在0.63mm,即步进电机走一步后,套筒的位置在0.63mm+0.005mm=0.635mm,而步进电机走完全程需要1854步,套筒的截止位置在0.63+0.005*1854=9.9mm.则刻度L 与步数n 的关系函数为L = 0.005n + 0.63(0 ≤ n ≤1854)。
可推导出频率f 与步数n的函数关系式为f = 0.000728n + 9.9(0 ≤ n ≤1854)。把步数对应的1854个频率值组成一个数组作为曲线的横坐标,并把采集到的1854个电流值作为纵坐标,利用PC机在LabVIEW描绘的波形图如图5-2所示。