标题:
柴油机测功过程中的能量回馈技术方案介绍
[打印本页]
作者:
Bazinga
时间:
2015-1-8 18:26
标题:
柴油机测功过程中的能量回馈技术方案介绍
随着技术的进步,在动力机和动力设备的研制方面,对动力机(如柴油机)的各项性能都提出了更高的要求。测功设备均为水力测功机配以各分立测试仪表。测试时,将柴油机的机械能通过水力测功机转化为的水的温升(热能)都白白浪费掉了。由此看来,如果能改进测功工艺,开发优质高效的能源回馈技术,将柴油机测试过程中的机械能转化为电能回馈给电网,将会大大节约能源,降低生产成本。利用“比较跟踪放大(CTA)变频(逆变)技术”,提出了一种在柴油机测功过程中的能量回馈方案。该方案可逆变出纯正弦波形的电能回馈电网,使节约能源和降低柴油机生产成本成为可能,且不对电网产生污染。
1 方案设计
在柴油机测功过程中,将水力测功机负载改为发电机,在满足测试工艺的前提下,通过CTA逆变技术将发电机发出的频率和幅值不固定的电能,优质高效地转换为和电网同频幅同步的电能,回馈给电网(或带动其它用电负载),即可达到节能的目的。我们采用如下方案:在柴油机试验台上和柴油机同轴安装减速机、发电机和启动电机;发电机输出的电能经整流、CTA逆变电路,逆变出和电网同频同步的电能;再经电压调节电路回馈至电网。
2 硬件电路设计
2.1 CTA逆变原理
CTA是比较跟踪放大(Compare-Track-Amplify)的英文缩写。它逆变出的波形轮廓完全由提供的参考信号决定。单相的CTA逆变电路原理图如图1所示。
经过整流得到的直流电,加在图中+、-端。S1、S2为开关管,两组L、C分别构成两个正负半波滤波器。参考正弦信号Vref和后级取样信号在比较器中比较的结果,通过驱动电路驱动开关管S1、S2的通断,就会在后级得到带锯齿的正弦波,且其基波是和参考信号Vref同频率正弦波。把此电压信号作为电源加在乙类功率管上,功率管为射极输出,最后在负载上就可得到频率和参考信号Vref完全相同的纯正弦电压波形。输出电压的波形和频率完全由参考信号Vref决定。
2.2 试验台设备配置
试验台设备配置框图如图2所示。柴油机的额定转速一般都高于发电机的额定转速(如各系列柴油机额定转速有1800、2200、2800r/min等多种,而发电机额定转速一般为1500r/min)。为使转速相匹配,同时也使试验台能够适应不同型号柴油机的测功试验,设置了有2~3个转速比的减速机和发电机相匹配。启动电机的作用是在测试试验前启动柴油机,启动后即通过离合器和转轴分离。启动电机为小容量的三相异步电动机,它和电网的切换由转换开关来实现。当启动完成时,转换开关即切断电网和启动电机的连接,进入柴油机的低速空载磨合期(根据各型号柴油机的测功工艺不同,磨合期在20~50分钟不等)。此后,加大油门进入不同转速下的参数测试期。在测试期,当CTA逆变电路正常工作时,转换开关将电路切换到能量回馈端。从CTA逆变电路输出的能量经电压调节电路调节电压幅值后,回馈给电网。
2.3 三相CTA逆变技术方案
CTA逆变技术电路的主电路如图3所示,分为整流(由整流二极管组成)和逆变(由IGBT组成)两部分。通过CTA逆变电路,在逆变侧输出与电网同频率且同步的略带毛刺的正弦波,再经TA技术电路滤去毛刺,输出纯正弦波,经电压调节电路后,通过转换开关送入电网。CTA逆变技术目前已成为一种能产生优质纯正弦波的成熟逆变技术,其产生的正弦波波形失真度小于4~5%。
电压调节电路是一个随时跟踪电网电压幅值的高性能的电动调压器。由取样的电网侧及逆变输出侧的信号和柴油机测功的负载信号经过运算和处理,产生电动调压器的调节信号,调节电压比以控制回馈电流。为使电路稳定,电路中加入了电流反馈环节,以稳定回馈电流(即柴油机测功的负载)。
2.4 CTA逆变控制电路
2.4.1 CTA逆变控制原理
逆变控制电路要解决两个问题:一是逆变出的电压波形必须和电网电压同频率且同步,可通过直接从电网电压侧同步取参考信号来实现;二是输出的电压波形毛刺包括线要比较窄,否则,后级TA技术电路的功率管功耗将大大增加。这可通过适当提高控制电路和IGBT管的开关频率来实现。控制电路原理框图如图4所示。
首先从电网侧同步取出可供逆变器工作的参考信号和同步信号,由此参考信号产生的三相六波头信号和由逆变器输出的带毛刺三相六波头信号进行比较,从而产生控制IGBT导通的控制信号。再经由六脉冲门信号控制的门电路,送到六个IGBT栅极,从而控制六个IGBT的通断,最后使逆变器输出和电网同频率、同相位(同步)的带毛刺正弦波。通过由电网参考信号控制的TA技术电路滤去毛刺(谐波),即得到和电网同频率、同相位的纯正弦电压。再经电压调节电路调整后,通过转换开关回馈给电网。
2.4.2 测功控制
对于小型柴油机,以额定转速为2200r/min为例,测试工艺要求在800~1000r/min时空载磨合约30分钟,此阶段逆变器不工作,发电机不发电;然后在1000~1100r/min时,加额定负载的50~60%,运行30~40分钟,此阶段发电机开始发电,逆变器工作并向电网回馈电能;在测试后期,柴油机在额定转速下满负载运行的一小时,系统在此状态下测定柴油机的各项参数,主要包括功率、扭矩、耗油量、机油温度、进行气温度、汽缸压力等;最后是测定在超过额定负载30%负荷下的转速、耗油量、机油温度、汽缸压力等参数的变化情况。
小型柴油机要测试的参数较少,测功工艺也相对简单。而中型及以上柴油机需要测试的参数较多,要求也较高。为提高测功系统的可靠性和测试参数的准确性,提高控制效率,整个测功系统采用微型计算机控制。柴油机转速由计算机控制的油门供油量闭环控制,通过操作面板上的触摸开关给定其升降;负荷的大小由逆变器回馈入电网电流的大小决定,计算机通过采集回馈电流信号及对负荷给定信号的比较计算机,来调节(微调)电压调节电路的电压比,从而调节回馈入电网的电流大小,以实现负荷的增减。负荷的增减给定,也由操作面板上的负荷增减触摸开关实现。柴油机的各项参数,包括转速、功率、扭矩、耗油量、机油温度、进出气温度、汽缸压力等均由各数字测量仪表或测量传感器通过计算机运算和处理后,进行存储、显示和打印,并配以适当的报警和查询功能,以实现测功系统的完整性和通用性。
3 参数设计
以额定功率为18.5kW的S195和S1100柴油机为例,选定测功系统的功率等级为20kW,额定转速为2200r/min。
发电机选用额定转速为1500r/min、额定输出功率为20kW的三相交流发电机或单相交流发电机。所配减速箱为具有1800/1500、2200/1500和2900/1500三个速比和扭矩为80牛顿米的减速箱。
CTA逆变器主电路功率元件参数为:整流二极管耐压1000V(单相发电机选用800V),额定电流为40A(单相发电机选100A);IGBT管耐压1000V,额定电流为40A;滤波电容为两个耐压1000V和容量为2200
μF的电解电容。CTA逆变器的三相输出端,各有一个由两个电容和一个电感组成的滤波环节,其作用是将输出的脉冲波形变为带有毛刺的正弦波形。此电容和电感参数不可过大,也不可过小。通过实验,此电感和电容分别选为8~10mH、20
μF 较为合适。
目前,我国各柴油机生产厂均未进行柴油机测试中能量回馈的研究和开发,但这方面的研究和开发对节约能源和降低生产成本极有价值,同时在矿山、起重业方面也有很大的应用前景。据初步统计,仅在动力机生产测试中,若进行能量回馈开发,我国每年即可回收再生电能近亿度。通过前期的研究和实验结果来看,本方案的可行性和可靠性的较好,但尚需进行计算机控制和配合测试工艺的进一步完善和开发。
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0