标题:
一篇好文: VHDL 编程的一些心得体会
[打印本页]
作者:
pengpengpang
时间:
2015-3-27 08:39
标题:
一篇好文: VHDL 编程的一些心得体会
VHDL 是由美国国防部为描述电子电路所开发的一种语言,其全称为(Very High Speed Integrated Circuit) Hardware Description Language。 与另外一门硬件描述语言 Verilog HDL 相比,VHDL 更善于描述高层的一些设计,包括系统级(算法、数据通路、控制)和行为级(寄存器传输级),而且 VHDL 具有设计重用、大型设计能力、可读性强、易于编译等优点逐渐受到硬件设计者的青睐。但是,VHDL 是一门语法相当严格的语言,易学性差,特别是对于刚开始接触 VHDL 的设计者而言,经常会因某些小细节处理不当导致综合无法通过。为此本文就其中一些比较典型的问题展开探讨,希望对初学者有所帮助,提高学习进度。
一. 关于端口
VHDL 共定义了 5 种类型的端口,分别是 In, Out,Inout, Buffer及 Linkage,实际设计时只会用到前四种。In 和 Out 端口的使用相对简单。这里,我们主要讲述关于 buffer和inout 使用时的注意事项。 与 Out 端口比,Buffer 端口具有回读功能,也即内部反馈,但在设计时最好不要使用 buffer,因为 buffer类型的端口不能连接到其他类型的端口上,无法把包含该类型端口的设计作为子模块元件例化,不利于大型设计和程序的可读性。若设计时需要实现某个输出的回读功能,可以通过增加中间信号作为缓冲,由该信号完成回读功能。 双向端口 Inout 是四种端口类型中最为特殊的一种,最难以学习和掌握,为此专门提供一个简单程序进行阐述,部分程序如下:... …① DataB<=Din when CE=’1’ and Rd=’0’ else② (others=>’Z’);③ Dout<=DataB when CE=’1’ and Rd=’1’ else④ ( others=>’1’ );… … 程序中 DataB 为双向端口,编程时应注意的是,当 DataB 作为输出且空闲时,必须将其设为高阻态挂起,即有类似第②行的语句,否则实现后会造成端口死锁。而当 DataB 作为有效输入时, DataB 输出必须处于高阻态,对于该例子中即,当 CE=’1’ and Rd=’1’时,
二.信号和变量
常数、信号和变量是 VHDL 中最主要的对象,分别代表一定的物理意义。常数对应于数字电路中的电源或地;信号对应某条硬件连线;变量通常指临时数据的局部存储。信号和变量功能相近,用法上却有很大不同。表 1 信号与变量主要区别 信号 变量赋值延迟 至少有△延时 无,立即变化相关信息 有,可以形成波形 无,只有当前值进程敏感 是 否全局性 具有全局性,可存在于多个进程中 只能在某个进程或子程序中有效相互赋值关系 信号不能给变量赋值 变量可以给信号赋值 对于变量赋值操作无延迟,初学者认为这个特性对 VHDL 设计非常有利,但这只是理论上的。基于以下几点原因,我们建议,编程时还是应以信号为主,尽量减少变量的使用。(1)变量赋值无延时是针对进程运行而言的,只是一个理想值,对于变量的操作往往被综合成为组合逻辑的形式,而硬件上的组合逻辑必然存在输入到输出延时。当进程内关于变量的操作越多,其组合逻辑就会变得越大越复杂。假设在一个进程内,有关于变量的 3 个 级连操作,其输出延时 分别为 5ns,6ns,7ns,则其最快的时钟只能达到 18ns。相反,采用信号编程,在时钟控制下,往往综合成触发器的形式,特别是对于 FPGA 芯片而言,具有丰富的触发器结构,易形成流水作业,其时钟频率只受控于延时最大的那一级,而不会与变量一样层层累积。假设某个设计为 3 级流水作业,其每一级延时分别为 10ns,11ns,12ns,则其最快时钟可达 12ns。因此,采用信号反而更能提高设计的速度。(2)由于变量不具备信息的相关性,只有当前值,因此也无法在仿真时观察其波形和状态改变情况,无法对设计的运行情况有效验证,而测试验证工作量往往会占到整个设计 70%~80%的工作量,采用信号则不会存在这类问题。(3)变量有效范围只能局限在单个进程或子程序中,要想将其值带出与其余进程、子模块之间相互作用,必须借助信号,这在一定程度上会造成代码不够简洁,可读性下降等缺点。 当然,变量也具有其特殊的优点,特别是用来描述一些复杂的算法,如图像处理,多维数组变换等。
三.位(矢量)与逻辑(矢量)
bit 或其矢量形式 bit_vector只有’0’和’1’两种状态,数字电路中也只有’0’和’1’两种逻辑,因此会给初学者一个误区,认为采用位(矢量)则足够设计之用,而不必像std_logic那样出现’X’,’U’,’W’各种状态,增加编程难度。但实际情况却并非如此,以一个最简单 D型触发器设计为例… …① process(clk)② begin③ if clk’event and clk=’1’ then④ Q<=D;⑤ end if;⑥ end process;… …实际中 clk 对数据端 D的输入有一定的时间限制,即在 clk 上升沿附近(建立时间和保持时间之内),D必须保持稳定,否则 Q输出会出现亚稳态,如下图所示。 当 clk 和 D时序关系不满足时,由于 bit 只有’0’或’1’,系统只能随机的从’0’和’1’中给 Q 输出,这样的结果显然是不可信的;而采用 std_logic 类型,则时序仿真时会输出为一个’X’,提醒用户建立保持时间存在问题,应重新安排 D和 clk 之间时序关系。 此外,对于双向总线设计(前面已提及)、 FPGA/CPLD上电配置等问题,如果没有’Z’,’X’等状态,根本无法进行设计和有效验证。
四.关于进程
进程(Process)是 VHDL 中最为重要的部分,大部分设计都会用到 Process 结构,因此掌握Process 的使用显得尤为重要。以下是初学和使用 Process 经常会出错的例子。1. 多余时钟的引入 在设计时往往会遇到这种情况,需要对外部某个输入信号进行判断,当其出现上跳或下跳沿时,执行相应的操作,而该信号不像正常时钟那样具有固定占空比和周期,而是很随机,需要程序设计判断其上跳沿出现与否。这时,很容易写出如下程序:① process(Ctl_a) -- Ctl_a即为该输入信号② begin③ if Ctl_a’event and Ctl_a=’1’ then④ … … ; --执行相应操作⑤ end if ;⑥ end process; 由于出现第③行这类语句,综合工具自动默认 Ctl_a 为时钟,某些 FPGA 更会强行将该输入约束到时钟引脚上。而设计者的初衷只是想将其作为下位机的状态输入以进行判断。上面的程序容易造成多时钟现象,增加设计的难度。解决的办法可以如下,将 Ctl_a 增加一级状态Ctl_areg 寄存,通过对 Ctl_a 和Ctl_areg 状态判断上跳与否,改正程序如下:① process(clk)② begin③ if clk’event and clk=’1’ then④ Ctl_areg<=Ctl_a;--产生相邻状态⑤ if Ctl_areg=’0’ and Ctl_a=’1’ then--上跳判断⑥ … … ; --执行相应操作⑦ end if;⑧ end if;⑨ end process;程序中第④行用以产生两个相邻状态,第⑤行对前后状态进行判断是否有上跳现象发生。其中,需注意的是 clk 的时钟频率应明显快于 Ctl_a信号的变化频率,以保证正确采样。2. 输出多驱动 误用 Process经常会引起输出多驱动源的发生,即在两个以上的进程内对同一信号赋值操作。以下程序就出现了这类情况:⑴ Proc_a: process(clk)⑵ begin⑶ if clk’event and clk=’1’ then⑷ Dout<=Din_A;⑸ end if⑹ end process;;⑺⑻ Proc_b:process(sel_en)⑼ begin⑽ if sel_en=’1’ then⑾ Dout<=Din_B;⑿ end if;⒀ end process;进程 Proc_a 和 Proc_b 中都出现了对 Dout 的赋值语句,设计者原本的想法是,只要合理控制好 clk 和 sel_en 输入,使其不发生冲突,即 clk上升沿时 sel_en 不为’1’;sel_en 为’1’时,不出现 clk 的上升沿,这样 Proc_a,Proc_b 两个进程就不会发生冲突。但综合时,综合工具会将所有可能情况全部罗列进去,包括第⑶行和第⑽行同时成立的情况,此时对于 Dout就有 Din_A和 Din_B 两个输入驱动,Dout 不知接收哪一个,因此该程序无法综合,改正的方法是只要将两个进程合并成一个即可。由于进程在 VHDL 中的重要性,对此专门做了一个总结如下:(1)一个进程中不允许出现两个时钟沿触发,(Xilinx 公司 CoolRunner 系列 CPLD 支持单个时双钟的双触发沿除外)(2)对同一信号赋值的语句应出现在单个进程内,不要在时钟沿之后加上 else 语句,如 if clk’event and clk=’1’ then - else … 的结构,现有综合工具支持不了这种特殊的触发器结构(3)当出现多层 IF语句嵌套时,最好采用 CASE 语句替代,一是减少多层嵌套带来的延时,二来可以增强程序的可读性(4)顺序语句如 IF语句、CASE 语句、LOOP 语句、变量赋值语句等必须出现在进程、函数或子程序内部,而不能单独出现在进程之外(5)进程内部是顺序执行的,进程之间是并行运行的;VHDL 中的所有并行语句都可以理解为特殊的进程,只是不以 Process结构出现,其输入信号和判断信号就是隐含的敏感表
五.关于 VHDL 学习中的几点说明
与软件语言相比,VHDL 最重要的特点就在于它的并行运行特性,当设计好的电路上电后,器件内部所有信号将同时并发工作,而不会以软件方式按照程序顺序执行,即使在进程内部也是趋向并行工作的。例如以下程序:① process(clk)② begin③ if clk’event and clk=’1’ then④ <= ;⑤ <= ;⑥ end if;;⑦ end process; 综合的结果两个独立的 D 型触发器,虽然进程内部应按顺序执行,但是硬件实现后,只要采样到时钟上升沿, 和 状态会同时翻转,而不会先执行 的变化,然后才会去执行 的转变。因此,VHDL 学习过程中,应加强硬件概念的理解,没有硬件概念或是硬件概念不强,在设计时,往往会将 VHDL 设计以软件编程的方式来处理,而得出一些不可思议的结果。 作为一门硬件描述语言,VHDL 几乎可以用来描述现有的大型系统数字电路、算法以及其它设计。但是,限于目前综合工具的水平,VHDL 中的许多语法还不能支持,例如:dout<=din after 5 ns; 综合时就无法达到如此精度,因此这条语句主要用来编写测试激励,而很少出现在设计实体中。类似的情况还有很多,目前 VHDL 设计使用的也只是整个标准中的一部分,这也正是VHDL 的“可综合子集”性质,它一定程度上限制了 VHDL 的广泛应用,但是随着综合技术的发展,这种情况会逐渐得以改善,VHDL 也将在各个领域中发挥出愈来愈重要的作用
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0