标题: 最小二乘法多项式曲线拟合原理与实现(2) [打印本页]
作者: yuyang911220 时间: 2016-9-16 11:41 标题: 最小二乘法多项式曲线拟合原理与实现(2)
实现
运行前提:- Python运行环境与编辑环境;
- Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。
代码:[python] view plain copy
- # coding=utf-8
- '''''
- 作者:Jairus Chan
- 程序:多项式曲线拟合算法
- '''
- import matplotlib.pyplot as plt
- import math
- import numpy
- import random
- fig = plt.figure()
- ax = fig.add_subplot(111)
- #阶数为9阶
- order=9
- #生成曲线上的各个点
- x = numpy.arange(-1,1,0.02)
- y = [((a*a-1)*(a*a-1)*(a*a-1)+0.5)*numpy.sin(a*2) for a in x]
- #ax.plot(x,y,color='r',linestyle='-',marker='')
- #,label="(a*a-1)*(a*a-1)*(a*a-1)+0.5"
- #生成的曲线上的各个点偏移一下,并放入到xa,ya中去
- i=0
- xa=[]
- ya=[]
- for xx in x:
- yy=y
- d=float(random.randint(60,140))/100
- #ax.plot([xx*d],[yy*d],color='m',linestyle='',marker='.')
- i+=1
- xa.append(xx*d)
- ya.append(yy*d)
- '''''for i in range(0,5):
- xx=float(random.randint(-100,100))/100
- yy=float(random.randint(-60,60))/100
- xa.append(xx)
- ya.append(yy)'''
- ax.plot(xa,ya,color='m',linestyle='',marker='.')
- #进行曲线拟合
- matA=[]
- for i in range(0,order+1):
- matA1=[]
- for j in range(0,order+1):
- tx=0.0
- for k in range(0,len(xa)):
- dx=1.0
- for l in range(0,j+i):
- dx=dx*xa[k]
- tx+=dx
- matA1.append(tx)
- matA.append(matA1)
- #print(len(xa))
- #print(matA[0][0])
- matA=numpy.array(matA)
- matB=[]
- for i in range(0,order+1):
- ty=0.0
- for k in range(0,len(xa)):
- dy=1.0
- for l in range(0,i):
- dy=dy*xa[k]
- ty+=ya[k]*dy
- matB.append(ty)
- matB=numpy.array(matB)
- matAA=numpy.linalg.solve(matA,matB)
- #画出拟合后的曲线
- #print(matAA)
- xxa= numpy.arange(-1,1.06,0.01)
- yya=[]
- for i in range(0,len(xxa)):
- yy=0.0
- for j in range(0,order+1):
- dy=1.0
- for k in range(0,j):
- dy*=xxa
- dy*=matAA[j]
- yy+=dy
- yya.append(yy)
- ax.plot(xxa,yya,color='g',linestyle='-',marker='')
- ax.legend()
- plt.show()
运行效果:
本博客中所有的博文都为笔者(Jairus Chan)原创。
如需转载,请标明出处:http://blog.csdn.net/JairusChan。
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) |
Powered by Discuz! 7.0.0 |