Board logo

标题: WLAN中的MIMO-OFDM技术(2) [打印本页]

作者: yuyang911220    时间: 2016-10-17 16:04     标题: WLAN中的MIMO-OFDM技术(2)

  2  实现MIMO-OFDM技术的关键
    MIMO-OFDM技术是OFDM和MIMO技术结合产生的一种新技术,其通过在OFDM传输系统中采用阵列天线实现空间分集,提高了信号质量。由于利用了时间、频率和空间3种分集技术,因而使无线系统对噪声、干扰、多径的容限大大增加。
    实现MIMO-OFDM技术需要完成以下关键设计:
    (1)发送分集
    MIMO与OFDM调制方式相结合,对下行信道选用时延分集。时延分集实现简单、性能优良,又没有反馈要求。实现方法是让第2副天线发出的信号比第1副天线发出的信号延迟一段时间。发送端引用这样的时延后,可使接收的信道响应得到频率选择性。如采用适当的编码和穿插,接收端可以获得“空间-频率”分集增益而不需预知信道情况。
    (2)空间复用
    为提高数据传输速率,可以采用空间复用技术。把1个传输速率相对较高的数据流分割为1组相对速率较低的数据流,分别在不同的天线对不同的数据流独立编码、调制和发送,同时使用相同的频率和时隙。每副天线可以通过不同的独立的信道滤波发送信号。接收机利用空间均衡器分离信号,然后解调、译码和解复用,恢复出原始信号。
    (3)接收分集和干扰消除
    如果基台和用户终端一侧用3副接收天线,可取得接收分集的效果。利用最大比值合并(MRC)将多个接收机的信号合并,可得到最大信噪比(SNR),具有遏止自然干扰的好处。但是,如有2个数据流互相干扰,或者从频率再利用的邻近地区传来干扰,MRC就不能起遏止作用。这时,利用最小的均方误差(MMSE)可使每一有用信号与其估计值的均方误差最小,从而使信号干扰噪声比(SINR)最大。
    (4)软译码
    MRC和MMSE算法生成软判决信号,供软解码器使用。软解码和SINR加权组合结合使用,可能对频率选择性信道提供3?4dB的性能增益。
    (5)信道估计
    信道估计的目的在于识别每组发送天线与接收天线之间的信道冲激响应。从每副天线发出的训练子载波都是相互正交的,能够唯一地识别每副发送天线到接收天线的信道。训练子载波在频率上的间隔要小于相干带宽,因此可以利用内插获得训练子载波之间的信道估计值,并根据信道的时延扩展,实现信道内插的最优化。在下行链路中,逐帧向所有用户广播发送专用信道标识时隙;在上行链路中,由于移动台发出的业务可以构成时隙,而且信道在时隙与时隙之间会发生变化,因此需要在每个时隙内包括训练和数据子载波。
    (6)同步
    上行和下行链路传播之前,都需要同步时隙,以便实施相位、频率对齐及频率偏差估计。时隙按以下方式构成:在偶数序号子载波上发送数据与训练符号,而在奇数序号子载波设置为零。这样经过IFFT变换之后,得到的时域信号就会被重复,更加有利于信号的检测。
    (7)自适应调制和编码
    为每个用户配置链路参数,可以最大限度地提高系统容量。根据两个用户特定位置和时间内的INR统计特征,以及用户对服务质量(QoS)的要求,有多种编码与调制方案用于在用户数据流的基础上实现最优化。QAM级别可以介于4到64,编码可以包括凿孔卷积编码与Reed-solomon编码。因此存在6种调制和编码级别。在2MHz的信道带宽内,编码模式1?6分别对于1.1?6.8Mb/s的数据传输速率。下行链路中,在使用空间复用的情况下,上述速率可以被加倍。链路适配层算法能够在SINR统计特性的基础上,选择使用最佳的编码模式。
    目前正在开发的WLAN设备能够实现最大为108Mb/s的传输速率。客户端支持MIMO-OFDM技术时的传输速率为108Mb/s,客户端不支持MIMO OFDM技术时的传输速率为54 Mb/s。
    3  结束语
    MIMO技术和OFDM技术在各自的领域都发挥了巨大的作用,目前将MIMO与OFDM相结合并应用到下一代无线局域网中,是无线通信的一个研究热点,将使无线局域网向着更高速率、更大容量、更好性能的方向发展。




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0