标题:
嵌入式实时操作系统μC/OS-II 在P89V51RD2中的移植(2)
[打印本页]
作者:
yuyang911220
时间:
2016-11-21 10:51
标题:
嵌入式实时操作系统μC/OS-II 在P89V51RD2中的移植(2)
?OS_CPU_C.C的移植
μC/OS-II的移植要求用户在OS_CPU_C.C中编写10个简单的C函数。但唯一必要的μC/OS-II的移植要求用户在OS_CPU_C.C中编写10个简单的C函数。但唯一必要的是OSTaskStkInit(),其他九个必须声明,但不一定要任何程序代码。
OSTaskStkInit()是在系统创建任务时用来初始化任务堆栈的,使堆栈看起来就象中断刚发生一样,所有寄存器都保存在堆栈中。由于P89V51RD2硬件堆栈很小,最多只能有在内部RAM空间的256字节。因此很难将所有任务的堆栈都用硬件堆栈来实现。为了解决这个问题,我们为每个任务在外部RAM空间都分配一段连续的存储区,用来模拟每个任务的堆栈。在μC/OS-II进行任务切换时,首先将P89V51RD2硬件堆栈中的内容复制到要失去CPU拥有权的任务的外部模拟堆栈区,然后将要得到CPU拥有权的任务的外部模拟堆栈中的有效数据复制到P89V51RD2的硬件堆栈中。这样就实现了任务保护和切换。任务模拟堆栈和硬件的堆栈结构如图2所示。TCB 结构体中OSTCBStkPtr 总是指向用户堆栈最低地址,该地址空间内存放用户堆栈长度,其上空间存放系统堆栈映像,即:任务模拟堆栈空间大小=系统硬件堆栈空间大小+1。SP 总是先加1再存数据,因此SP初始时指向系统堆栈起始地址(OSStack)减1 处(OSStkStart)。很明显系统硬件堆栈存储空间大小=SP-OSStkStart。编写OSTaskStkInit()主要完成用户堆栈初始化,从下向上依次保存用户堆栈长度(5),PCL, PCH,PSW, AC C,B, DPL, DPH,R0,R1, R2,R3,R4,R5,R6,R7。不保存SP,任务切换时根据用户堆栈长度计算得出。紧接着的两字节保存可重入函数仿真堆栈的指针X_CP的高8位和低8位,初始化为任务模拟栈的最高地址的高8位和低8位。OSTaskStkInit()总是返回任务模拟栈的最低地址。
OS_CPU_A.ASM的移植
OS_CPU_A.ASM的移植要求用户编写4个简单的汇编语言函数:
OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()
μ C/OS-II的启动函数OSStart()调用OSStartHighRdy()来使就绪态任务中 优先级最高的任务开始运行,我们通过将任务模拟栈的有效长度内的数据复制到系统硬件堆栈,然后使用紧接着的两字节来改写X_CP的值。使可重入函数仿真堆栈指针指向该任务模拟栈的最高地址,这样做是因为Keil C51使用的可重入函数仿真堆栈的增长方向是向下的,和系统硬件堆栈的增长方向相反。这样就完成了OSStartHighRdy()的移植。
OSCtxSw()和OSIntCtxSw()两个汇编函数的功能主要完成任务的切换。不同的是OSCtxSw()在任务级调用,而OSIntCtxSw()是在中断推出时调用。对于在P89V51RD2上的移植而言,这两个函数的实现基本相同。只是OSIntCtxSw()在中断调用中 由于OSIntExit()和自身对硬件堆栈的影响,需要将要保存的SP指针向下调整4个字节,以消除影响。μC/OS-II在需要任务切换时,根据CPU是否处在中断状态选择调用其中一个函数。如图2堆栈结构 所示,任务切换时先保存当前任务堆栈内容,方法是:用SP-OSStkStart 得出保存字节数。将其写入任务模拟堆栈最低地址内。以任务模拟堆栈最低地址为起址,以OSStkStart为系统硬件堆栈起址,由系统堆栈向用户堆栈拷贝数据。循环SP-OSStkStart次,每次拷贝前先将各自栈指针增1。其次恢复最高优先级任务系统堆栈方法是:获得最高优先级任务用户堆栈最低地址,从中取出长度。以最高优先级任务用户模拟堆栈最低地址为起址,以OSStkStart 为系统堆栈起址,由任务模拟堆栈向系统堆栈拷贝数据。循环“有效长度”数值指示的次数。每次拷贝前先将各自栈指针增1。
μC/OS-II要求用户提供一个周期性的时钟源,来实现时间的延迟和超时功能。在P89V51RD2中我们通过定时器T0来提供时钟源。频率设为50Hz。T0的初始化函数在OS_CPU_C.C实现。时钟节拍中断服务子程序的编写也很简单,示意性代码如下:
void OSTickISR(void)
{
保存处理器寄存器;
调用OSIntEnter();
定时器计数器重装;
调用OSTimeTick();
调用OSIntExit();
恢复处理器寄存器;
执行中断返回指令;
}
μC/OS-II 移植代码的测试
完成μC/OS-II移植后,就要对移植的代码进行测试。测试移植的μC/OS-II是否能够完成任务调度、时间管理、任务管理与同步等功能,是否能够启动多 任务环境。在P89V51RD2的移植中,编写简单的测试程序进行多任务的测试。测试程序创建了4任务,任务AA,BB,CC和LedFlash优先级分别为2,3,4,5。任务AA延时一秒通过串口输出一 次,任务BB延时3秒通过串口输出一次,任务CC延时6秒通过串口输出一次。
LedFlash等待信号量有效时,对P1.1口进行一次取反操作。P1.1连接LED惊醒观察。定时器中断服务子 程序定时发出信号量。这样任务LedFlash实现LED的闪烁功能。
μC/OS-II测试程序的文件结构,硬件测试结果和Keil C51的软件仿真结果如图3所示。结果表明μC/OS-II在P89V51RD2上 的移植是成功的。
结语
通过μC/OS-II在P89V51RD2上的移植,掌握了μC/OS-II内核的工作原理和移植方法,测试程序表明移植代码可以稳定可靠的运行,实现了多任务的管理和调度。μC/OS-II实时操作系统的移入,不但可以提高系统的实时性、可靠性和稳定性,还提高了应用软件的可移植性,降低了开发人员的工作量。
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0