Board logo

标题: 基于ARM的手指静脉识别系统 [打印本页]

作者: yuchengze    时间: 2016-12-13 19:16     标题: 基于ARM的手指静脉识别系统

本帖最后由 yuchengze 于 2016-12-27 15:10 编辑

Android系统可以直接安装的apk安装包,即NDK可以将包含JNI接口函数的C源程序文件编译生成动态库,供Android应用程序调用,提高了对现有代码的重用性,而加快了开发进度。
1 嵌入式系统总体结构

比较完整的手指静脉识别系统应具备采集和识别这两个基本的功能。首先通过嵌入式采集装置获取使用者的相关信息,并将该使用者的手指静脉特征添加到手指静脉特征数据库;然后根据数据库中使用者信息与采集的手指静脉图像比对,判定其身份是否正确。为此,将该嵌入式手指静脉识别系统分为硬件平台、嵌入式操作系统和应用软件三部分。

嵌入式系统硬件主要由嵌入式微处理器S3C6410及其外围扩展电路组成。其中,S3C6410是一款基于ARM11内核的微控制器,其主频达667 MHz,具有丰富的外围接口控制器,可以满足图像识别所需性能要求。嵌入式操作系统采用 WinCE6.0,其模块化设计使得嵌入式系统和应用程序开发者能够方便地根据需求定制产品,同时还具有100%开放WinCE 6.0内核源代码。采用微软的多媒体DirectShow技术,在Visual Studio 2005环境下开发图像采集应用程序,在PC机上调试成功后移植到嵌入式系统平台下运行并实现身份识别。

2 嵌入式系统硬件设计

系统硬件设计采用模块化设计原则,把嵌入式系统硬件平台分为微处理器核心模块、手指静脉成像模块、自动调光控制模块和辅助操作模块。其硬件结构如图1所示。

本设计选取S3C6410作为嵌入式微处理器,其上外接DRAM接口、Nand Flash接口以及丰富的总线接口电路。同时S3C6410还集成了电源电路、复位电路、RS232接口电路和USB接口电路等部分。其中,DRAM接口用于连接动态存储器,本设计采用Mobile DDR存储器,用于运行操作系统及存取应用程序。Nand Flash则用于固化嵌入式操作系统Windows CE内核、手指静脉识别软件等,以及储存采集的图像等数据资料。
手指静脉成像模块包括红外光源、红外滤光片和图像传感器。
本设计选用微型OV9650图像传感器模组,它由30针的CMOS图像传感器和手动微调镜头组成,需要为其提供必须的电源。摄像头电源电路如图2所示。通过S3C6410的摄像头接口从S3C6410获取+5 V电源,分别转换为3路电压值为摄像头电路供电。

本文通过转接板来实现摄像头模组与S3C6410的连接,其接口电路如图3所示。其中,J1用于 S3C6410摄像头接口与转接板的连接,U10则是摄像头模组与转接板的接口。

对于近红外光源,选用波长为850 nm、型号为TSHG5210的高速红外发光二极管,设计中排成直线形阵列。由于环境不同,可见光对手指静脉成像影响也有所不同,因此,在镜头前放置型号为IR780的近红外滤光片来滤除可见光。

自动调光控制模块使红外光源能够根据被采集对象手指的不同粗细进行自动调光,使摄像头接收到的光强不变,采集到的图像亮度适中。本设计在原来研制的积分调节电路[2]基础上改进为带PID控制器的红外光强自动调节电路。当采用PID电路进行串联校正时,可以使得系统型别提高一级;同时还为系统提供两个负实零点,进行调节时,可进一步提高系统稳定性,改善系统动态性能。PID控制器电路图如图4所示。

辅助操作模块包括LCD、USB鼠标和8×8矩阵键盘等,用于对嵌入式系统进行控制。

3 嵌入式识别系统应用软件开发

本文采用多媒体DirectShow技术来设计摄像头图像采集应用程序。为了完成对图像数据的处理,创建多个过滤器并连接,数据流从源过滤器经过中间过滤器移动到渲染过滤器,最终提供给用户。在这个过程中完成对数据的读取、解码、将数据输出到相应设备上。本文将视频预览和视频捕捉封装成视频采集过滤器,如图5所示。其中,“智能Tee”是为了调节PCI总线分流数据。





欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0