Board logo

标题: 多通道抗凝血药物筛选检测仪的研制 [打印本页]

作者: yuyang911220    时间: 2016-12-24 10:24     标题: 多通道抗凝血药物筛选检测仪的研制

摘要:介绍一种以透射比浊法为设计原理,单片机89C52为核心的96通道高速抗凝血药物筛选平台。该仪器自动完成血液(血浆)凝血时间的实时检测及数据采集,数据采集的精度、速度及灵敏度较传统的凝血时间测量仪器有较大的提高。提出了将凝血时间测量用于相关药物筛选的新途径。
血液凝固的过程非常复杂的。生物体在正常生理状态下,血液中的凝血系统与抗凝血系统处于自我调节的一种平衡状态,如果这种平衡被破坏,就会形成凝血系统疾病。现在临床上最常用的抗凝血类药物是肝素,这种药物虽然有很好的抗凝血效果,却伴随着血和血小板减少等副作用,而且当患者本身患有弥散性血管内凝血等疾病时便无法采用。现有的口服类抗凝血药物(如节丙酮香豆素[1])的使用效果又不甚理想。因此,新型抗凝血药物的研制工作是非常必要的。
进行抗凝血药物开发的第一步就是要检验药物的抗凝效果,也就是凝血时间的检测。现在际上普通认可的测量凝血时间的指标主要有两个:凝血酶原时间(Prothrombin Time,PT)和活化部分凝血活酶时间(Actived Partial Thromboplastin Time,APTT)。这两个指标是由国际血液学标准化委员会(ICSH)、估计血检与止血委员会(ICTH)和美国临床检验标准委员会(NCCLS)联合制定分布的[2]。PT和APTT不仅能取代传统的Duke法出血时间和玻片法凝血时间而作为新的临床止血功能指标,并且能为抗凝血药物开发过程提供更好的监控指标。
正常的凝血过程时间很短,即使加入抗凝剂,也不会超过1分钟。正常情况下,PT不会超过20秒,这给手工测量带来了很大的困难。为了寻求方便的检测途径,国内外许多企业已经开始研制相关的自动化凝血时间测量仪,并且已经投放市场如德国TECO公司的TEChrom IV plus 4通道半自动血栓/止血测定仪;法国BIOCHEM公司STAGO全自动血栓/止血分析仪等。这些凝血测量仪虽然可以完成一个或几个样品的同时检测,但是仍然沿用临床检测的套路,检测速度有限,样品用量比较大,样品波大都固定于仪器上,清洗不方便,同时价格也相当昂贵,不适用于药物开发。
为了提高凝血测量仪的性能,同时满足高通量的药物筛选的需求,我们利用单片机设计了一套新型的凝血时间自动检测仪,目的在于为新药开发质量控制提供便利。这台小型的凝血时间测量装置(体积仅30cm×20cm×12cm)不仅能够进行96路并行实时检测,而且样品用量少(20μl),灵敏度高(0.1秒),具有很好的应用前景。
1 测量原理
血液的凝固从物理上来讲就是非溶性纤维蛋白形成的过程,而且在很短的时间内非溶性纤维蛋白的数量会陡然增加。这样,整个血液的透光率就会迅速降低(浊度升高),一段时间后就会渐渐变缓。通常我们所测量的凝血时间也就是指非溶性纤维蛋白形成的起始阶段,即浊度变化达到三倍信澡比的时间。
透射比浊法正是利用了血液在凝血过程中浊度突然升高的原理来设计的。只要检测器件具有足够的灵敏度,就可以检测出血液凝固的时间。
2 检测仪设计
2.1 样品池设计
检测仪采用标准平底透明96孔板作为样品池,其上、下方分别为一一对应光敏二极管和发光二极管,样品池采用抽屉式结构。每次使用可以将抽屉拉出,放上96孔板,再加入凝血试剂和血液(血浆),然后启动检测开关,开始数据采集。
2.2 电路设计
由于通过光敏二极管接收到的电压信号变化量往往比较低(几个mV),对于光源手检测器件的选择至关重要的。因此,在仪器设计以前,首先选用了几个不同的发光二极管(以下简称LED)和与其对应的光敏二极管对凝血过程透光率进行了实测相应的理论计算。
图1所示为光敏二极管的基本电路。二极管两端的电流为:

式中,I为通过不敏二极管的电流,Is为反向饱和电流,VD为二极管两端电压,VT=kT/q称为混度进行当量,其中k为玻尔兹曼常数,T为热力学温度,q为电子的电量。在300K时,VT≈26mV。反向偏置时,只要|VD|大于VT几倍以上,I=-Is,其中负号表示反向电流。
实验证明,光敏二极管的反向电流在一定范围内与LED上的加载电压存在正比的函数关系,如图2所示。这是因为LED正常发光过程中,LED加载电压与输出光强存在正比关系;光敏二极管的反向电流与其吸收光强也存在正比的函数关系。根据这一点我们可以做如下推断:
假设通过光敏二极管的吸收光强为φ,则
I=-Is=Cφ+m≈Cφ
其中,C与m为仅随温度而变化的因子,m≈0。
与光敏二极管串联的电阻R两端电压V=IR=CφR,并有:φ=φ0+Δφ,V=V0+ΔV,V0=CRφ0, ΔV=CRΔφ。其中,V0和φ0为凝血反应开始之前R电阻两端的电压与光敏二极管的吸收光强。
在凝血反应开始之后的某一时刻,吸收光强为φ=φ0(1-ε)ε为某一时刻光强变化的百分比,则Δφ=φ-φΔ0=-εφ0,所以
ΔV=-εCφ0R=-εV0 ΔV/V0=-ε
可以看到,电阻R两端的电压变化仅与ε和V0有关。ε对于固定时刻和固定的反应体系来说是不变的,因此,ΔV仅与V0有关。也就是说,在某一确定的时刻,信号电压变化的百分比只与反应体系有关。根据这个结论,我们只要通过选择合适的元器件并加以调节,提高初始输入电压V0,就可保证ΔV足够大。

    在设计过程中,我们选择光强高、波长适宜、直径为5mm的蓝色高亮发光二极管阵列作为光源,并连接可调节电源来同时控制所有发光二极管的亮度;选择相应的直径为5mm的光敏二极管阵列作为检测元件,串连50k电位器用于逐个调节每个二极管的初始输出电压,消除每对发光二极管和光敏二极管之间存在的个体差异;最后选择高精度A/D转换器来采集数据。实验测量显示,当溶液总体积不低于60μl时,采用16位的A/D转换器便可满足测量精度的要求。
图3与基本结构的原理图。整个仪器以Atmel公司的AT89C52(以下称间C52)单片机为核心实现数据采集和控制,配合电-光-电转换电路的A/D转换器(ADC)等来检测样品的透光率及其变化。A/D转换器采用Analog Devices公司的16位ADC——AD7660,仪器分辨率达到2 16,大致相当于一个4位半万用表的精度;ADC的量程是0~2.5V。
单片机设置完成D/A转换器(MAX7224KCWN,8-bitDAC,Maxim Integrated Products)后,光敏二极管串联电位器上的电压数据通过多路模拟开关(MAX306CWI,16-Channel,Maxim Integrated Products)选择后送到ADC进行模数转换,转换后的数据被C52读取。C52发出的数据再经MAXRS232(MAXRS232CWE,Maxim Integrated Products)进行电平转换,通过串口传入计算机。




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0