寄生信号与瞬态效应
在802.11a/b/g设计适合于大量生产之前,实现过程不允许存在会对发射机性能产生不良影响的寄生信号与瞬态效应。如前所述,参考晶体振荡器与频率合成器VCO对电源噪声、DC-DC转换器开关噪声或未屏蔽信号特别敏感。这种寄生信号与晶体振荡器或VCO之间的耦合会引入相位噪声,从而降低发射信号的质量。
要隔离或确定会降低发射机性能的瞬态效应是非常困难的。比如,RF功率放大器在有WLAN脉冲通信时打开,而没有通信时关闭以最大限度降低功耗。当功率放大器在脉冲来临之前启动时,功率放大器将产生较大的电流并可能导致电源产生电压降或引起接地电流。除非电路板的其它部分完全消除这些影响,否则它们会影响晶体振荡器或频率合成器,引入瞬态频率误差与相位噪声而瞬时降低发射信号的质量。功率放大器通电所产生的这种频率推移以及振荡器对电源电压的敏感性会因其持续时间的长短而带来不同的影响。
802.11b/g标准需要首先发射短或长同步码(preamble),短同步码的持续时间为72ms,长同步码的持续时间为144ms。与此相对,802.11a/g标准需要先发射10个重复的总计8ms 的短训练序列(short training sequence),后跟2个重复的总计另外8ms的长训练序列(long training sequence)。缓慢稳定的瞬态频率误差会破坏802.11a/g信号,甚至对802.11b/g支持的低数据速率产生不良影响。如果一个特殊的接收机设计对发射频率的估算是建立在前几微秒同步码的基础上的话,则快速稳定的发射频率误差也会影响性能。但要了解是否发生这种瞬态响应是很困难的,在设计过程的所有阶段检查信号的频率误差与时间关系的曲线时也许并未发生瞬态响应。某些测试仪器,如IQview允许根据短训练序列、长训练序列或全数据包的频率估算量计算OFDM信号的EVM(如果最终的EVM值变化较大),因而这也是发射频率可能受到瞬态误差影响的因素。