标题:
DSP中的基础算法和模型的详细解析:核心算法(2)
[打印本页]
作者:
yuyang911220
时间:
2017-6-20 08:57
标题:
DSP中的基础算法和模型的详细解析:核心算法(2)
考虑广告位信息后,AUC提升了0.0346,还是非常明显的。这个Lift也是一种评估指标,后面会详细解释。这里可以看到Lift指标也明显提升了。
具体看个例子。对于一个hotel广告主的一个campaign,不同的广告位预估出来的Φ值也很不相同,旅游类的预估值最高,社会媒体的最低。说明这个模型还是有一定区分度的。
评估
1. 模型评估
通常我们用AUC来评估模型的排序能力,但是AUC有一个问题是它无差别地考察了一个列表中所有位置的排序合理性,而对于我们的audience selection模型,转化率预估模型,我们更看重是否把最靠谱的拍在了前面,换句话说,是更看重这个列表中,前面的位置的排序合理性。因此m6d用了Lift指标。Lift@5% 指标衡量了在前5%的结果中,正例的比例比在随机情况下正例出现的比例高了多少。具体的Lift定义可以看:http:/ /en .wikipedia.org/wiki/Lift_(data_mining)
2. 业务目标评估
对于DSP的投放效果,m6d主要会看两个业务指标,一个是转化率(PVSVR), 即转化数除以展现数(即CTR*CVR);另外一个是CPA, 即获得每一个转化,平均花了多少钱。
m6d的广告主大多喜欢按CPM方式购买展现,找n家DSP来同时投放,给一样的CPM,然后看谁的转化率高。因此转化率是DSP赖以生存的指标之一。
转化率是和价格无关的,而如果一家DSP虽然转化率低10%,但是每个展现的价格(cpm)比别人低50%,那么对于广告主来说,还是会选择它的。因为它的CPA更低了,即获取一个转化,广告主需要付出的成本更低了。
所以,DSP的转化率是和利润挂钩的,要么把技术做得很好提高转化率,这样在保持CPA不变的情况下,向广告主收取更高的CPM,从而赚更多的钱。否则就只能比别人卖得更便宜了,甚至亏本了。当然,聪明的DSP会在早期先砸VC的钱亏本吸引广告主来投放,投放是可以累积数据的,有了数据下次就可以把转化率做得更好,从而再把钱赚回来。
也有广告主是按每个点击付费的(CPC),有的广告主是给一笔固定的投放预算,但其实最后都是类似的,广告主最终会去换算成CPA来进行比较。(只重视展现量的广告主除外)
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0