Board logo

标题: OSS--跨平台的音频接口简介 [打印本页]

作者: look_w    时间: 2018-4-18 20:12     标题: OSS--跨平台的音频接口简介

OSS(Open Sound System)是unix平台上一个统一的音频接口。以前,每个Unix厂商都会提供一个自己专有的API,用来处理音频。这就意味着为一种Unix平台编写的音频处理应用程序,在移植到另外一种Unix平台上时,必须要重写。不仅如此,在一种平台上具备的功能,可能在另外一个平台上无法实现。但是,OSS出现以后情况就大不一样了,只要音频处理应用程序按照OSS的API来编写,那么在移植到另外一个平台时,只需要重新编译即可。因此,OSS提供了源代码级的可移植性。
同时,很多的Unix工作站中,只能提供录音与放音的功能。有了OSS后,给这些工作站带来了MIDI功能,加上音频流、语音识别/生成、计算机电话(CT)、JAVA以及其它的多媒体技术,在Unix工作站中,同样可以享受到同Windows、Macintosh环境一样的音频世界。另外,OSS还提供了与视频和动画播放同步的音频能力,这对在Unix中实现动画、游戏提供了帮助。
本文首先解释在音频编程时经常遇到的名词、设备文件的含义,然后分别在录音、播放、Mixer方面对OSS接口的使用方法进行介绍。由于OSS API十分丰富,因此在本文中只介绍那些最为常用的接口。对于OSS API的一个完整描述,可以参考[1]。
一、基础知识数字音频设备(有时也称codec,PCM,DSP,ADC/DAC设备):播放或录制数字化的声音。它的指标主要有:采样速率(电话为8K,DVD为96K)、channel数目(单声道,立体声)、采样分辨率(8-bit,16-bit)。
mixer(混频器):用来控制多个输入、输出的音量,也控制输入(microphone,line-in,CD)之间的切换。
synthesizer(合成器):通过一些预先定义好的波形来合成声音,有时用在游戏中声音效果的产生。
MIDI 接口:MIDI接口是为了连接舞台上的synthesizer、键盘、道具、灯光控制器的一种串行接口。
在Unix系统中,所有的设备都被统一成文件,通过对文件的访问方式(首先open,然后read/write,同时可以使用ioctl读取/设置参数,最后close)来访问设备。在OSS中,主要有以下的几种设备文件:
这些设备文件的设备编号见[1]。
二、音频编程OSS为音频编程提供三种设备,分别是/dev/dsp,/dev/dspW和/dev/audio,前面已经提到了它们之间的区别。
用户可以直接使用Unix的命令来放音和录音,命令cat /dev/dsp >xyz可用来录音,录音的结果放在xyz文件中;命令cat xyz  >/dev/dsp播放声音文件xyz。
如果通过编程的方式来使用这些设备,那么Unix平台通过文件系统提供了统一的访问接口。程序员可以通过文件的操作函数直接控制这些设备,这些操作函数包括:open、close、read、write、ioctl等。下面我们就分别讨论打开音频设备、放音、录音和参数调整。
1. 打开音频设备1) 头文件定义
1
2
3
4
5
6
7
8
9
10
11
12
13
/*
* Standard includes
*/
#include <ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>
/*
* Mandatory variables.
*/
#define BUF_SIZE 4096
int audio_fd;
unsigned char audio_buffer[BUF_SIZE];




2) 打开设备
1
2
3
4
5
if ((audio_fd = open(DEVICE_NAME, open_mode, 0)) == -1) {
/* Open of device failed */
perror(DEVICE_NAME);
exit(1);
}




open_mode有三种选择:O_RDONLY,O_WRONLY和O_RDWR,分别表示只读、只写和读写。OSS建议尽量使用只读或只写,只有在全双工的情况下(即录音和放音同时)才使用读写模式。
2. 录音
1
2
3
4
5
int len;
if ((len = read(audio_fd, audio_buffer, count)) == -1) {
perror("audio read");
exit(1);
}




count为录音数据的字节个数(建议为2的指数),但不能超过audio_buffer的大小。从读字节的个数可以精确的测量时间,例如8kHZ 16-bit stereo的速率为8000*2*2=32000bytes/second,这是知道何时停止录音的唯一方法。
3. 放音放音实际上和录音很类似,只不过把read改成write即可,相应的audio_buffer中为音频数据,count为数据的长度。
注意,用户始终要读/写一个完整的采样。例如一个16-bit的立体声模式下,每个采样有4个字节,所以应用程序每次必须读/写4的倍数个字节。
另外,由于OSS是一个跨平台的音频接口,所以用户在编程的时候,要考虑到可移植性的问题,其中一个重要的方面是读/写时的字节顺序。
4. 设置参数音频设备通过分频的方法产生需要的采样时钟,因此不可能产生所有的频率。驱动程序会计算出最接近要求的频率来,用户程序要检查返回的速率值,如果误差较小,可以忽略,但误差不能太大。
三、Mixer编程对Mixer的控制,包括调节音量(volume)、选择录音音源(microphone,line-in)、查询mixer的功能和状态,主要是通过Mixer设备/dev/mixer的ioctl接口。相应的,ioctl接口提供的功能也分为三类:调节音量、查询mixer的能力、选择mixer的录音通道。下面就分别介绍使用的方法:
下面的mixer_fd是对mixer设备执行open操作返回的文件描述符。
四、结束语前面讨论的是OSS中一些最基本的内容,实际上OSS中还有很多高级的特性,比如在音频编程时十分重要的实时性问题,画面与声音的同步问题,这里都没有介绍。如果读者对这些特性感兴趣的话,可以进一步参考[1]。另外,在[2]中,还可以下载使用OSS接口的样例程序。




欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0