Board logo

标题: 用 GStreamer 简化 Linux 多媒体开发--简介 [打印本页]

作者: look_w    时间: 2018-5-9 19:45     标题: 用 GStreamer 简化 Linux 多媒体开发--简介

一、基本概念GStreamer 作为 GNOME 桌面环境推荐的流媒体应用框架,采用了基于插件(plugin)和管道(pipeline)的体系结构,框架中的所有的功能模块都被实现成可以插拔的组件(component),并且在需要的时候能够很方便地安装到任意一个管道上,由于所有插件都通过管道机制进行统一的数据交换,因此很容易利用已有的各种插件“组装”出一个功能完善的多媒体应用程序。
1.1 元件处理对于需要应用 GStreamer 框架的程序员来讲,GstElement 是一个必须理解的概念,因为它是组成管道的基本构件,也是框架中所有可用组件的基础,这也难怪 GStreamer 框架中的大部分函数都会涉及到对 GstElement 对象的操作。从 GStreamer 自身的观点来看,GstElement 可以描述为一个具有特定属性的黑盒子,它通过连接点(link point)与外界进行交互,向框架中的其余部分表征自己的特性或者功能。
按照各自功能上的差异,GStreamer 又将 GstElement 细分成如下几类:
图1将有助于你更好地理解数据源元件、过滤器元件和接收器元件三者的区别,同时也不难看出它们是如何相互配合形成管道的:
图1需要注意的是,过滤器元件的具体形式是非常灵活的,GStreamer并没有严格规定输入端和输出端的数目,事实上它们都可以是一个或者多个。图2是一个AVI分离器的基本结构,它能够将输入数据分离成单独的音频信息和视频信息,用于实现该功能的过滤器元件很明显只具有一个输入端,但却需要有两个输出端。
图2要想在应用程序中创建GstElement对象,唯一的办法是借助于工厂对象GstElementFactory。由于GStreamer框架提供了多种类型的GstElement对象,因此对应地提供了多种类型的GstElementFactory对象,它们是通过特定的工厂名称来进行区分的。例如,下面的代码通过gst_element_factory_find()函数获得了一个名为mad的工厂对象,它之后可以用来创建与之对应的MP3解码器元件:
1
2
GstElementFactory *factory;
factory = gst_element_factory_find ("mad");




成功获得工厂对象之后,接下来就可以通过gst_element_factory_create()函数来创建特定的GstElement对象了,该函数在调用时有两个参数,分别是需要用到的工厂对象,以及即将创建的元件名称。元件名称可以用查询的办法获得,也可以通过传入空指针(NULL)来生成工厂对象的默认元件。下面的代码示范了如何利用已经获得的工厂对象,来创建名为decoder的MP3解码器元件:
1
2
GstElement *element;
element = gst_element_factory_create (factory, "decoder");




当创建的GstElement不再使用的时候,还必须调用gst_element_unref()函数释放其占用的内存资源:
1
gst_element_unref (element);




GStreamer使用了与GObject相同的机制来对属性(property)进行管理,包括查询(query)、设置(set)和读取(get)等。所有的GstElement对象都需要从其父对象GstObject那里继承名称(name)这一最基本的属性,这是因为像gst_element_factory_make()和gst_element_factory_create()这样的函数在创建工厂对象和元件对象时都会用到名称属性,通过调用gst_object_set_name()和gst_object_get_name()函数可以设置和读取GstElement对象的名称属性。
1.2 衬垫处理衬垫(pad)是GStreamer框架引入的另外一个基本概念,它指的是元件(element)与外界的连接通道,对于框架中的某个特定元件来说,其能够处理的媒体类型正是通过衬垫暴露给其它元件的。成功创建GstElement对象之后,可以通过gst_element_get_pad()获得该元件的指定衬垫。例如,下面的代码将返回element元件中名为src的衬垫:
1
2
GstPad *srcpad;
srcpad = gst_element_get_pad (element, "src");




如果需要的话也可以通过gst_element_get_pad_list()函数,来查询指定元件中的所有衬垫。例如,下面的代码将输出element元件中所有衬垫的名称:
1
2
3
4
5
6
7
GList *pads;
pads = gst_element_get_pad_list (element);
while (pads) {
  GstPad *pad = GST_PAD (pads->data);
  g_print ("pad name is: %s\n", gst_pad_get_name (pad));
  pads = g_list_next (pads);
}




与元件一样,衬垫的名称也能够动态设置或者读取,这是通过调用gst_pad_get_name ()和gst_pad_set_name()函数来完成的。所有元件的衬垫都可以细分成输入衬垫和输出衬垫两种,其中输入衬垫只能接收数据但不能产生数据,而输出衬垫则正好相反,只能产生数据但不能接收数据,利用函数gst_pad_get_direction()可以获得指定衬垫的类型。GStreamer框架中的所有衬垫都必然依附于某个元件之上,调用gst_pad_get_parent()可以获得指定衬垫所属的元件,该函数的返回值是一个指向GstElement的指针。衬垫从某种程度上可以看成是元件的代言人,因为它要负责向外界描述该元件所具有的能力。GStreamer框架提供了统一的机制来让衬垫描述元件所具有的能力(capability),这是借助数据结构_GstCaps来实现的:
1
2
3
4
5
6
7
struct _GstCaps {
  gchar *name; /* the name of this caps */
  guint16 id; /* type id (major type) */
  guint refcount; /* caps are refcounted */
  GstProps *properties; /* properties for this capability */
  GstCaps *next; /* caps can be chained together */
};




以下是对mad元件的能力描述,不难看出该元件中实际包含sink和src两个衬垫,并且每个衬垫都带有特定的功能信息。名为sink的衬垫是mad元件的输入端,它能够接受MIME类型为audio/mp3的媒体数据,此外还具有layer、bitrate和framed三种属性。名为src的衬垫是mad元件的输出端,它负责产生MIME类型为audio/raw媒体数据,此外还具有format、depth、rate和channels等多种属性。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Pads:
  SINK template: ’sink’
    Availability: Always
    Capabilities:
    ’mad_sink’:
      MIME type: ’audio/mp3’:
  SRC template: ’src’
    Availability: Always
    Capabilities:
      ’mad_src’:
        MIME type: ’audio/raw’:
        format: String: int
        endianness: Integer: 1234
        width: Integer: 16
        depth: Integer: 16
        channels: Integer range: 1 - 2
        law: Integer: 0
        signed: Boolean: TRUE
        rate: Integer range: 11025 - 48000




准确地说,GStreamer框架中的每个衬垫都可能对应于多个能力描述,它们能够通过函数gst_pad_get_caps()来获得。例如,下面的代码将输出pad衬垫中所有能力描述的名称及其MIME类型:
1
2
3
4
5
6
7
8
9
GstCaps *caps;
caps = gst_pad_get_caps (pad);
g_print ("pad name is: %s\n", gst_pad_get_name (pad));
while (caps) {
  g_print (" Capability name is %s, MIME type is %s\n",
  gst_caps_get_name (cap),
  gst_caps_get_mime (cap));
  caps = caps->next;
}




1.3 箱柜箱柜(bin)是GStreamer框架中的容器元件,它通常被用来容纳其它的元件对象,但由于其自身也是一个GstElement对象,因此实际上也能够被用来容纳其它的箱柜对象。利用箱柜可以将需要处理的多个元件组合成一个逻辑元件,由于不再需要对箱柜中的元件逐个进行操作,因此能够很容易地利用它来构造更加复杂的管道。在GStreamer框架中使用箱柜还有另外一个优点,那就是它会试着对数据流进行优化,这对于多媒体应用来讲是很具吸引力的。
图3描述了箱柜在GStreamer框架中的典型结构:
图3在GStreamer应用程序中使用的箱柜主要有两种类型:
GStreamer框架提供了两种方法来创建箱柜:一种是借助工厂方法,另一种则是使用特定的函数。下面的代码示范了如何使用工厂方法创建线程对象,以及如何使用特定函数来创建管道对象:
1
2
3
4
5
GstElement *thread, *pipeline;
// 创建线程对象,同时为其指定唯一的名称。
thread = gst_element_factory_make ("thread", NULL);
// 根据给出的名称,创建一个特定的管道对象。
pipeline = gst_pipeline_new ("pipeline_name");




箱柜成功创建之后,就可以调用gst_bin_add()函数将已经存在的元件添加到其中来了:
1
2
3
4
5
GstElement *element;
GstElement *bin;
bin = gst_bin_new ("bin_name");
element = gst_element_factory_make ("mpg123", "decoder");
gst_bin_add (GST_BIN (bin), element);




而要从箱柜中找到特定的元件也很容易,可以借助gst_bin_get_by_name()函数实现:
1
2
GstElement *element;
element = gst_bin_get_by_name (GST_BIN (bin), "decoder");




由于GStreamer框架中的一个箱柜能够添加到另一个箱柜之中,因此有可能会出现箱柜嵌套的情况,gst_bin_get_by_name()函数在查找元件时会对嵌套的箱柜作递归查找。元件有添加到箱柜之中以后,在需要的时候还可以从中移出,这是通过调用gst_bin_remove()函数来完成的:
1
2
GstElement *element;
gst_bin_remove (GST_BIN (bin), element);




如果仔细研究一下图3中描述的箱柜,会发现它没有属于自己的输入衬垫和输出衬垫,因此显然是无法作为一个逻辑整体与其它元件交互的。为了解决这一问题,GStreamer引入了精灵衬垫(ghost pad)的概念,它是从箱柜里面所有元件的衬垫中推举出来的,通常来讲会同时选出输入衬垫和输出衬垫,如图4所示:
图4具有精灵衬垫的箱柜在行为上与元件是完全相同的,所有元件具有的属性它都具有,所有针对元件能够进行的操作也同样能够针对箱柜进行,因此在GStreamer应用程序中能够像使用元件一样使用这类箱柜。下面的代码示范了如何为箱柜添加一个精灵衬垫:
1
2
3
4
5
6
GstElement *bin;
GstElement *element;
element = gst_element_factory_create ("mad", "decoder");
bin = gst_bin_new ("bin_name");
gst_bin_add (GST_BIN (bin), element);
gst_element_add_ghost_pad (bin, gst_element_get_pad (element, "sink"), "sink");






欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/) Powered by Discuz! 7.0.0