标题:
Java NIO浅析(4)
[打印本页]
作者:
look_w
时间:
2018-12-18 20:29
标题:
Java NIO浅析(4)
多连接短连接的HttpClient
类似于竞对抓取的项目,往往需要建立无数的HTTP短连接,然后抓取,然后销毁,当需要单机抓取上千网站线程数又受制的时候,怎么保证性能呢?
何不尝试NIO,单线程进行连接、写、读操作?如果连接、读、写操作系统没有能力处理,简单的注册一个事件,等待下次循环就好了。
如何存储不同的请求/响应呢?由于http是无状态没有版本的协议,又没有办法使用队列,好像办法不多。比较笨的办法是对于不同的socket,直接存储socket的引用作为map的key。
常见的RPC框架,如Thrift,Dubbo
这种框架内部一般维护了请求的协议和请求号,可以维护一个以请求号为key,
结果的result为future的map,结合NIO+长连接,获取非常不错的性能。
NIO高级主题
Proactor与Reactor
一般情况下,I/O 复用机制需要事件分发器(event dispatcher)。 事件分发器的作用,即将那些读写事件源分发给各读写事件的处理者,就像送快递的在楼下喊: 谁谁谁的快递到了, 快来拿吧!开发人员在开始的时候需要在分发器那里注册感兴趣的事件,并提供相应的处理者(event handler),或者是回调函数;事件分发器在适当的时候,会将请求的事件分发给这些handler或者回调函数。
涉及到事件分发器的两种模式称为:Reactor和Proactor。 Reactor模式是基于同步I/O的,而Proactor模式是和异步I/O相关的。在Reactor模式中,事件分发器等待某个事件或者可应用或个操作的状态发生(比如文件描述符可读写,或者是socket可读写),事件分发器就把这个事件传给事先注册的事件处理函数或者回调函数,由后者来做实际的读写操作。
而在Proactor模式中,事件处理者(或者代由事件分发器发起)直接发起一个异步读写操作(相当于请求),而实际的工作是由操作系统来完成的。发起时,需要提供的参数包括用于存放读到数据的缓存区、读的数据大小或用于存放外发数据的缓存区,以及这个请求完后的回调函数等信息。事件分发器得知了这个请求,它默默等待这个请求的完成,然后转发完成事件给相应的事件处理者或者回调。举例来说,在Windows上事件处理者投递了一个异步IO操作(称为overlapped技术),事件分发器等IO Complete事件完成。这种异步模式的典型实现是基于操作系统底层异步API的,所以我们可称之为“系统级别”的或者“真正意义上”的异步,因为具体的读写是由操作系统代劳的。
举个例子,将有助于理解Reactor与Proactor二者的差异,以读操作为例(写操作类似)。
在Reactor中实现读
注册读就绪事件和相应的事件处理器。
事件分发器等待事件。
事件到来,激活分发器,分发器调用事件对应的处理器。
事件处理器完成实际的读操作,处理读到的数据,注册新的事件,然后返还控制权。
在Proactor中实现读
:
处理器发起异步读操作(注意:操作系统必须支持异步IO)。在这种情况下,处理器无视IO就绪事件,它关注的是完成事件。
事件分发器等待操作完成事件。
在分发器等待过程中,操作系统利用并行的内核线程执行实际的读操作,并将结果数据存入用户自定义缓冲区,最后通知事件分发器读操作完成。
事件分发器呼唤处理器。
事件处理器处理用户自定义缓冲区中的数据,然后启动一个新的异步操作,并将控制权返回事件分发器。
可以看出,两个模式的相同点,都是对某个I/O事件的事件通知(即告诉某个模块,这个I/O操作可以进行或已经完成)。在结构上,两者也有相同点:事件分发器负责提交IO操作(异步)、查询设备是否可操作(同步),然后当条件满足时,就回调handler;不同点在于,异步情况下(Proactor),当回调handler时,表示I/O操作已经完成;同步情况下(Reactor),回调handler时,表示I/O设备可以进行某个操作(can read 或 can write)。
下面,我们将尝试应对为Proactor和Reactor模式建立可移植框架的挑战。在改进方案中,我们将Reactor原来位于事件处理器内的Read/Write操作移至分发器(不妨将这个思路称为“模拟异步”),以此寻求将Reactor多路同步I/O转化为模拟异步I/O。以读操作为例子,改进过程如下:
注册读就绪事件和相应的事件处理器。并为分发器提供数据缓冲区地址,需要读取数据量等信息。
分发器等待事件(如在select()上等待)。
事件到来,激活分发器。分发器执行一个非阻塞读操作(它有完成这个操作所需的全部信息),最后调用对应处理器。
事件处理器处理用户自定义缓冲区的数据,注册新的事件(当然同样要给出数据缓冲区地址,需要读取的数据量等信息),最后将控制权返还分发器。
如我们所见,通过对多路I/O模式功能结构的改造,可将Reactor转化为Proactor模式。改造前后,模型实际完成的工作量没有增加,只不过参与者间对工作职责稍加调换。没有工作量的改变,自然不会造成性能的削弱。对如下各步骤的比较,可以证明工作量的恒定:
标准/典型的Reactor:
步骤1:等待事件到来(Reactor负责)。
步骤2:将读就绪事件分发给用户定义的处理器(Reactor负责)。
步骤3:读数据(用户处理器负责)。
步骤4:处理数据(用户处理器负责)。
改进实现的模拟Proactor:
步骤1:等待事件到来(Proactor负责)。
步骤2:得到读就绪事件,执行读数据(现在由Proactor负责)。
步骤3:将读完成事件分发给用户处理器(Proactor负责)。
步骤4:处理数据(用户处理器负责)。
对于不提供异步I/O API的操作系统来说,这种办法可以隐藏Socket API的交互细节,从而对外暴露一个完整的异步接口。借此,我们就可以进一步构建完全可移植的,平台无关的,有通用对外接口的解决方案。
代码示例如下:
interface ChannelHandler{ void channelReadComplate(Channel channel,byte[] data); void channelWritable(Channel channel); } class Channel{ Socket socket; Event event;//读,写或者连接 } //IO线程主循环: class IoThread extends Thread{ public void run(){ Channel channel; while(channel=Selector.select()){//选择就绪的事件和对应的连接 if(channel.event==accept){ registerNewChannelHandler(channel);//如果是新连接,则注册一个新的读写处理器 Selector.interested(read); } if(channel.event==write){ getChannelHandler(channel).channelWritable(channel);//如果可以写,则执行写事件 } if(channel.event==read){ byte[] data = channel.read(); if(channel.read()==0)//没有读到数据,表示本次数据读完了 { getChannelHandler(channel).channelReadComplate(channel,data;//处理读完成事件 } if(过载保护){ Selector.interested(read); } } } } Map<Channel,ChannelHandler> handlerMap;//所有channel的对应事件处理器 }
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0