标题:
从LR到FFM\n(1)
[打印本页]
作者:
look_w
时间:
2019-4-12 16:25
标题:
从LR到FFM\n(1)
上篇专栏文章我们说清楚了一件事情“CTR预估模型是互联网的增长之心”,在互联网永不停歇的增长需求的驱动下,CTR预估模型(以下简称CTR模型)的发展也可谓一日千里,从2010年之前千篇一律的逻辑回归(Logistic Regression,LR),进化到因子分解机(Factorization Machine,FM)、梯度提升树(Gradient Boosting Decision Tree,GBDT),再到2015年之后深度学习的百花齐放,各种模型架构层出不穷。
我想所有从业者谈起深度学习CTR预估模型都有一种莫名的兴奋,但在这之前,认真的回顾前深度学习时代的CTR模型仍是非常必要的。原因有两点:
1、即使是深度学习空前流行的今天,LR、FM等传统CTR模型仍然凭借其可解释性强、轻量级的训练部署要求、便于在线学习等不可替代的优势,拥有大量适用的应用场景。模型的应用不分新旧贵贱,熟悉每种模型的优缺点,能够灵活运用和改进不同的算法模型是算法工程师的基本要求。
2、传统CTR模型是深度学习CTR模型的基础。深度神经网络(Deep Nerual Network,DNN)从一个神经元生发而来,而LR模型正是单一神经元的经典结构;此外,影响力很大的FNN,DeepFM,NFM等深度学习模型更是与传统的FM模型有着千丝万缕的联系;更不要说各种梯度下降方法的一脉相承。所以说传统CTR模型是深度学习模型的地基和入口。
下面,我们用传统CTR模型演化的关系图来正式开始技术部分的内容。
看到上面的关系图,有经验的同学可能已经对各模型的细节和特点如数家珍了。中间位置的LR模型向四个方向的延伸分别代表了传统CTR模型演化的四个方向。
向下为了解决特征交叉的问题,演化出PLOY2,FM,FFM等模型;
向右为了使用模型化、自动化的手段解决之前特征工程的难题,Facebook将LR与GBDT进行结合,提出了GBDT+LR组合模型;
向左Google从online learning的角度解决模型时效性的问题,提出了FTRL;
向上阿里基于样本分组的思路增加模型的非线性,提出了LS-PLM(MLR)模型。
欢迎光临 电子技术论坛_中国专业的电子工程师学习交流社区-中电网技术论坛 (http://bbs.eccn.com/)
Powered by Discuz! 7.0.0