在电源电路应用中,往往首先考虑漏源电压 V DS 的选择。在此上的基本原则为MOSFET 实际工作环境中的最大峰值漏源极间的电压不大于器件规格书中标称漏源击穿电压的 90% 。即:V DS_peak ≤ 90% * V (BR)DSS。
一般 V (BR)DSS 具有正温度系数。故应取设备最低工作温度条件下之 V (BR)DSS值作为参考。
2 ) 漏极电流:
其次考虑漏极电流的选择。基本原则为 MOSFET 实际工作环境中的最大周期漏极电流不大于规格书中标称最大漏源电流的 90% ;漏极脉冲电流峰值不大于规格书中标称漏极脉冲电流峰值的 90% 即:I D_max ≤ 90% * I D
一般地, I D_max 及 I D_pulse 具有负温度系数,故应取器件在最大结温条件下之I D_max 及 I D_pulse 值作为参考。器件此参数的选择是极为不确定的—主要是受工作环境,散热技术,器件其它参数(如导通电阻,热阻等)等相互制约影响所致。最终的判定依据是结点温度(即如下第六条之“耗散功率约束”)。根据经验,在实际应用中 I D 会比实际最大工作电流大数倍,这是因为散耗功率及温升之限制约束。在初选计算时期还须根据下面第六条的散耗功率约束不断调整此参数。建议初选于 3~5 倍左右 I D = (3~5)*I D_max 。
3 ) 驱动要求:
MOSFEF 的驱动要求由其栅极总充电电量( Qg )参数决定。在满足其它参数要求的情况下,尽量选择 Qg 小者以便驱动电路的设计。驱动电压选择在保证远离最大栅源电压( V GSS )前提下使 Ron 尽量小的电压值(一般使用器件规格书中的建议值)。
4 ) 损耗及散热:
小的 Ron 值有利于减小导通期间损耗,小的 Rth 值可减小温度差(同样耗散功率条件下),故有利于散热。