摘要:为了测量某试件多点温度,且温度跨度很大,还要达到要求精度,本文利用几种不同类型的传感器(AD590、PT1000和K型热电偶)进行采集,其输出形式(电流源、电阻和热电势)和大小均不相同,设计了电源电路、信号转换电路和放大抬升电路,使各种传感器的输出达到统一的1~5 V的标准信号;在实验室利用高精度电压、电流源和电阻箱分别对热电偶、AD590和PT1000进行模拟,结果表明该方法可行,调理电路的相对精度可达到0.1级。
关键词:传感器;信号调理;AD590;三线制PT1000;K型热电偶
某试验系统中要求测量被测试件不同部位的温度变化梯度。试件头部到尾部的理论温度最大值依次为1100℃(1个测点)、300℃(2个测点)和100℃(3个测点)。供电电压12 V,要求输出信号1~5 V,相对精度不低于0.5级,重量≤100 g。如果仅仅满足一种温度指标要求,市面上的很多传感器或变送器都能很好的满足要求,若选择一种传感器意味着量程至少1 100℃,该传感器用于测量100℃的测点就很难满足精度,因此需选用不同类型的传感器,然而考虑到重量后就很难选出合适的传感器来,因此本文旨在一片电路板上完成多种传感器的信号调理工作,该设计有较大的实际意义。
1 系统组成
为了提高精度,根据被测温度的大小选用量程接近该温度的传感器,3种不同温度分别选择不同传感器如下。
测量1100℃的传感器用K型热电偶,其测量范围:-200~1300℃,能够满足要求。热电偶的热电势是毫伏级的,0℃时输出为0 V,1100℃输出45.118 7 mV;该信号为幅值比较小,且冷端(自由端)不可能恒为0℃,所以需设计冷端补偿电路和放大器。
测量300℃的传感器用Pt1000的铂电阻,测量范围:-50~300℃:0℃时电阻阻值1 000 Ω,300℃时电阻阻值2 120.515 Ω,反映温度的物理量是电阻,因此需要设计电桥将电阻的变化量转换位差模电压的变换量,然后进行信号放大和电平抬升。
测量100℃的传感器用AD590集成温度传感器,测量范围:-50~150℃,该器件精度较高,全温度范围内,非线性误差仅为±0.3℃,可充当一个高阻抗、恒流调节器,调节系数为1μA/K,即该器件在273.15 K(0℃)时输出273.15 μA电流,温度每升高1℃电流增加1μA;反映温度的是电流信号,因此需要将电流转换成电压信号后进行信号放大和电平抬升。
2 电路设计
调理电路主要由电源和各个放大器以及相应的信号变换电路组成,下面分别对各个模块进行详细论述。
2.1 电源电路
电源电路是让各个模块正常工作,系统使用了两路恒压源,恒压源分别为PT1000电桥电源(9 V)和输出抬升电源(1 V),9 V电源如图1所示。1 V电源和9 V电源基本相同,只是部分参数不同。电源电路中的集成运算放大器采用LM224,该芯片集成了4组运算放大器,工作电源可为单电源(12V)。
图1中D2为稳压管,9V电源选用额定击穿电压为9.1 V的1N4696,1 V电源选用额定击穿电压为1.2 V的LM385;RW92是电位器,和稳压管并联起到分压的作用,滑动头分别可得到9 V和1 V的电压;运放在这里是电压跟随器,输出电压和电位器滑动头处的电压大小相等;R92是限流电阻,和稳压管串联;两个电容是退耦电容,大小0.1 μF,起到稳定电压的作用。为了不影响稳压管工作电阻阻值不大于500 Ω,电阻功率不小于1 W。电位器阻值不小于10 kΩ。
2.2 ADS90调理电路
AD590是集成温度传感器,输出为电流,相当于恒流源,若要对此进行放大需先转换为电压,可在其回路串入电阻,根据欧姆定律,电阻上电压的大小可反映电流的大小,也就是温度的高低。图2是温度传感器AD590的信号调理变换电路。
图2中R11是采样电阻,阻值10 kΩ,精度1‰;0 ℃时传感器输出电流273.15μA,电阻上的电压2.731 5 V;100 ℃时传感器输出电流373.15 μA,电阻上的电压3.731 5 V;由于温度为0℃时传感器器输出不是0,因此放大前应先减去该零点电压,该电压常量见图中VRef,由9V利用电位器RW11分压后获得,大小为2.731 5 V;0℃时运放输入差分电压(Vin-VRef)为0 V。图中U1为仪表放大器,选用AD623,单电源 供电,增益1~1 000,其结构图如图3所示,只需调节一个电阻RG即可改变增益,Vo=(1+100kΩ/RG)(V+~V-),输出信号基准电平可以在一定范围内任意给定(利用5脚REF端)。
运放输入电压Vin范围2.731 5~3.731 5 V,减去基准后0~1 V(峰峰值1 V),放大后要求输出电压1~5V(峰峰值4V),因此放大器的放大倍数为4,调节1脚和8脚之间的电阻RG(图2中的R12和RW12)可改变放大倍数;运放5脚输入1 V的电压基准,即在0℃时运放输入为0 V(Vin~VRef),输出为1 V(对地),100℃时输出5 V,图2中电容为退耦电容或滤波电容,大小0.1μF。
2.3 PT1000调理电路热
市面上的PT1000根据接线形式有两线制、三线制接法和四线制,四线制精度最高,两线制最低,三线制介于两者之间,鉴于精度要求和连线的复杂程度而选用三线制,采用三线制形式;这种连线方式可以去除导线电阻带来的零点不准确。
三线制PT1000的一端有一根出线,另一端有两根出线,连线如图4所示。图中蓝线接电源,红线和PT1000组成电桥的一个桥臂,绿线、WR41和R43组成另一个桥臂;2个桥臂中均引入了长度几乎相同的导线(绿线和红线),温度变化时2个桥臂引线电阻同时增加或同时减小,而电桥零点不受影响,这样就提高了精度。
图4中WR41是调零电位器;电桥的输出直接连接运放AD623,其连接和调节增益方法和上节中相同这里不再介绍。调试时PT1000用电阻箱实现的,阻值由分度表获得的。
2.4 电偶调理电路
热电偶测温的基本原理是2种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势。温度较高的一端为工作端,温度较低的一端为冷端(自由端),冷通常处于某个恒定的温度下。若测量时,冷端的温度变化,将严重影响测量的准确性。因此采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。
本设计采用晶体管PN结温度特性进行冷端补偿,冷端补偿电路和热电偶串联,如图5所示。图中T为热电偶,其他为冷端补偿电路,晶体管选用三极管9012,其电压温度变化率约为-2.1 mV/℃,3个电阻、电位器和PNP三极管组成电桥。当冷端温度升高时,PN结压降降低,WR81滑动头电势降低,WR82和R83中间电势不变,电桥输出增大,补偿了热电偶冷端的温漂,当温度降低则相反。电路的输出直接连在运放AD623的输入端。
3 结论
文中针对几种不同类型的温度传感器(ADS90、PT1000和K型热电偶),设计了电源电路、信号转换电路和放大抬升电路,使各种传感器的输出达到统一的1~5 V的标准信号;并在实验室利用高精度电压、电流源和电阻箱分别对热电偶、AD590和PT1000进行了模拟,结果表明,调理电路的相对精度可达到0.1级,连接传感器后能达到0.5%的不确定度;重量为55 g达到了预期的效果。 |