首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
模拟电路
» 放大器建模为模拟滤波器可提高SPICE仿真速度
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
放大器建模为模拟滤波器可提高SPICE仿真速度
发短消息
加为好友
rise_ming
当前离线
UID
864567
帖子
4448
精华
0
积分
2224
阅读权限
70
在线时间
123 小时
注册时间
2011-12-12
最后登录
2014-8-25
金牌会员
UID
864567
1
#
打印
字体大小:
t
T
rise_ming
发表于 2013-3-24 00:19
|
只看该作者
放大器建模为模拟滤波器可提高SPICE仿真速度
放大器
,
滤波器
关键词:
放大器
,
模拟滤波器
,
SPICE
,
ADI
简介
放大器的仿真模型通常是利用电阻、电容、晶体管、二极管、独立和非独立的信号源以及其它模拟元件来实现的。一种替代方法是使用放大器行为的二阶近似(拉普拉斯转换),这可加快仿真速度并将仿真代码减少到三行。
然而,对于高带宽放大器,采用s域传递函数的时域仿真可能非常慢,因为仿真器必须首先计算逆变换,然后利用输入信号对其进行卷积。带宽越高,则确定时域函数所需的采样频率也越高,这将导致卷积计算更加困难,进而减慢时域仿真速度。
本文进一步完善了上述方法,将二阶近似合成为模拟滤波器,而不是
s
域传递函数,从而大大提高时域仿真速度,特别是对于高带宽放大器。
二阶传递函数
放大器仿真模型的二阶传递函数可以利用Sallen-Key滤波器拓扑实现,它需要两个电阻、两个电容和一个压控电流源;或者利用多反馈(MFB)滤波器拓扑实现,它需要三个电阻、两个电容和一个压控电流源。这两种拓扑给出的结果应相同,但Sallen-Key拓扑更易于设计,而MFB拓扑则具有更好的高频响应性能,可能更适合可编程增益放大器,因为它更容易切换到不同的电阻值。
首先,利用二阶近似的标准形式为放大器的频率和瞬态响应建模:
图1显示了如何转换到Sallen-Key和多反馈拓扑。
图
1.
滤波器拓扑结构
放大器的自然无阻尼频率ω
n
等于滤波器的转折频率 ω
c
,放大器的阻尼比ζ 则等于 ½乘以滤波器品质因素
Q
的倒数。对于双极点滤波器,
Q
表示极点到
j
ω轴的径向距离;
Q
值越大,则说明极点离
j
ω轴越近。对于放大器,阻尼比越大,则峰化越低。这些关系为
s
域 (
s
=
j
ω) 传递函数与模拟滤波器电路提供了有用的等效转换途径。
设计示例:
5
倍增益放大器
该设计主要包括三步:首先,测量放大器的过冲(
Mp
) 和建立时间 (
ts
)。其次,利用这些测量结果计算放大器传递函数的二阶近似。最后,将该传递函数转换为模拟滤波器拓扑以产生放大器的SPICE模型。
图
2. 5
倍增益放大器
例如,利用Sallen-Key和MFB两种拓扑仿真一款5倍增益放大器。从图2可知,过冲(
Mp
) 约为22%,2%建立时间则约为2.18 μs。阻尼比ζ计算如下:
重排各项以求解ζ:
接下来,利用建立时间计算自然无阻尼频率(单位为弧度/秒)。
对于阶跃输入,传递函数分母中的
s
2 和
s
项(弧度/秒)通过下式计算:
和
单位增益传递函数即变为:
将阶跃函数乘以5便得到5倍增益放大器的最终传递函数:
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议