首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

军用车辆防冲突大型移动通信设备的设计

军用车辆防冲突大型移动通信设备的设计

移动互联网设备(Mobile Internet Device,MID)是一种新的互联网终端。随着移动通信设备的发展,其今后将替代移动电话和笔记本电脑成为新的移动通信方式,该设备可以访问无限网络,完成基本的电脑功能,也可完成大规模的在线通信,流畅的使用办公软件,查看相关文档,安排合理的工作计划,同时还可欣赏音乐、电影和视频会议等影音功能;并且能够完成移动定位、在线摄影等功能记录生活的点滴。随着军用通信技术的不断发展,对新一代的军车通信提出了更高的要求。作为在笔记本电脑和手机之间新的产品形态,移动互联网设备其最大优势是不受地点和时间的限制,可完成移动通信。符合军用车辆的通信要求。其屏幕尺寸较小,方便随身携带,虽然个别小型的笔记本尺寸也越来越小,但仍无法达到随身携带的目的,因此其应当拥有较大的军用车辆市场前景;与一般的军用通信器材相比,其屏幕较大、显示和处理等功能较强、通信效果好,兼容性和通信的稳定性更佳。最为重要的是其通信的安全性,因此,特别适合军用车辆的使用。

1 移动通信设备的整体设计原理
为满足军用车辆移动通信设备安全高效的通信需求,整体设计采用较为流行的嵌入式设计技术。军用车辆移动通信设备的系统结构功能的整体组成如图1所示。


根据组成功能的不同,移动通信设备采用了模块化设计的思路:
(1)其核心处理器选择的是抗干扰能力较强的S3C2410:其通信效果好,协议安全性强,各种通信接口的功能强大。
(2)算法运算模块采用Altera公司较为成熟的FPGA器件StratixII系列EP2S180-1020FBGA,完成通信协议算法的编程工作。
(3)存储设备选择的是RAM和Flash:由于设备需要存储较大容量的信息,因此需要选择扩展的DDRRAM,可保持临时文件及相关的数据缓存,Flash采用NAND Flash,用于存放程序代码和数据等。
(4)音频信号输入输出:移动设备需要满足视频和音频的功能,因此需要一个扬声器,用于语音和视频数据的有效输出。
(5)串口:这是完成各种外界设备通信必备的接口。
(6)TD/GPRS/GSM模块:该模块可实现一般笔记本和手机见缺的功能,完成人员定位,是最为关键的模块。
(7)以太网收发器:采用DM9000AE芯片,10/100 Mbit·s-1速率自适应,可完成有线网络和无限网络的通信功能。
(8)USB接口:通过USB扩展应用,可对外完成多种设备的扩展,包括3G等应用设备。
(9)电源管理:为保证电源的耐用性,采用锂电池作为电源管理,并确保电源管理的高效性,能够完成系统的信号供应和外部时钟。
(10)WiFi模块:完成无线通信的功能,通过无线通信网络完成互联网通信端口之一。
系统平台的总体结构分为系统总体的设计、FPGA板、核心板3个部分。其中,设备采用USB接口、SD卡接口、音频接口、网口、电源接口、LCD触摸屏接口以及摄像头接口,系统可根据此硬件结构,完成一系列的功能,同时可以通过硬、软件的协调配合,完成功能的实现。

2 军用车辆通信系统硬件设计
军用车辆通信的核心芯片是Samsung公司的S3C2410,采用ARM1176JZF-S内核,数据存储空间达到16 kB并拥有同样大小的指令存储空间,其工作电压稳定,适用于波动较大的环境,工作频率达到553 MHz,在1.2 V的情况下,频率可达667 MHz。运用AXI、AHB和APB形成的64/32 bit总线设计和接口设备相连。以FPGA的封装方式进行封装,引脚规范较好。总线也可采用外边扩展的方式,对模块进行调用,其核心的硬件RTC电路设计如图2所示。


其中S3C24lO的VDDRTC可与其进行直连,保证工作效率。该模块采用的电压供电不超过4 V,完成了大部分的供电功能。另外,还设计了供电中出现掉电时的工作模式,由备用电池供电,此时S3C2410中唯有RTC模块工作,其余模块均处于停止状态。 根据S3C2410的最高工作频率及PLL电路的工作方式,系统晶振的选择需要一定的窍门,可采用12 Hz的晶振,也可选择频率较高的无源晶振作为系统的时钟信号提供方,系统选用25 Hz的晶振为相关的芯片设计时钟电路。当然,也可通过CUP芯片内部集成的倍频电路,根据系统的需求产生不同频率的晶振信号。其中,系统设定了相关的放大电路和信号干扰去除电路。因此,外边的信号频率无需较高,也可满足系统的相关需求,又可进一步降低系统在工作过程中的噪声。图3是这4种时钟的示意图,此处的电容用于滤除来自振荡的高次谐波,电阻是进行阻抗匹配的。


S3C2410处理器支持多种启动方式,不同设备的启动,方式不同。其中IROM是一种高速启动的方式,对NAND Flash、SD卡和ONENAND等设备进行相关的控制。这是顺序的启动方式,S3C2410处理器通过运行其本身固有的程序,计算EINT15、EINT14、EINT13这3个引脚状态,根据所得引脚的不同状态选择启动设备。S3C2410处理器的启动由XSELNAND、OM[4:1]、EINT[15:13]这3种引脚状态判断,完成SROM、NOR、NAN D、ONENAND、SD以及IROM的初始化。当NAND作为启动设备时,XSELNAND需要设定为高。

3 系统软件设计
完善的硬件配置需要用有效的软件作为平台,为保证新一代军车通信系统的高效性和安全性,配合其特有的存储能力、功耗、硬件系统的体积大小和相关接口。系统的软件设计终端是基于ARM Linux架构的。其软件结构如图4所示。


驱动程序设计包括:
(1)页面驱动程序设计。良好的页面处理程序化。Qt/Embedded的底层图形引擎基于Framebuffer。其是一种驱动程序接口,通过设计操作性较强的界面程序,对相关设计进行驱动,设备是/dev/fb0、/dev/fb1等。设备对操作的用户而言是相同的,封装后区别较小,客户相当于对一个内存进行操作,完成存储功能,通过内存映射程序完成相关操作,对内存内部的各个地址单元进行有效的访问,访问过程是双向的可以通过读的方式访问,也可以写入数据,并随即反应在屏幕上。(2)数模转换驱动设计。语音和视频信号是模拟波形,因此在设计驱动程序过程,必须保证信号传递的稳定性和可靠性。语音信号在传递时需要转换成数字信号,对模拟信号中的相关位进行数字化转换,转换结果要有效保持。保持的区域需要预定大小,若太小将发生溢出。数模转换工作需要专门的模块完成。该转换芯片也需要编写相应的驱动程序,该程序并不复杂,只需安装芯片的具体实现过程,完成编写即可。对声音的采集则需要固定的驱动程序完成转换。因此视频转换和声音转换均需要驱动完成。
(3)数据采集驱动程序设计。该部分是完成数据采集功能的模块,系统中的多数模块均会调用此模块,完成相关数据的采集。其中,声音信号的采集驱动程序设计较为特殊,其涉及到模数转换的过程,是将采集到的声音信号转换成数字信号的过程。转换的结果仍要保存在内存中,由于语言信号结构复杂,因此在嵌入式Linux下,语音的采集和播放可通过OSS(Open Sound System)的API接口来控制声卡实现模数与数模转换。
OSS无需使用指定的操作程序,因此使用时更加便捷,只需利用接口将操作程序与应用系统相连接即可实现交互运算。系统利用文件进行信息传递的,无需在运行的过程中进行程序调用。利用mad/write进行数据传输,通过ioctl进行指令传输。OSS系统与操作系统之间的关系可通过图5进行描述。



4 军用车辆通信系统测试
在军用车辆通信检测系统中,任意选取N个功能进行系统测试。测试中需要启动车载IP视频电话,从而选取合理的网络,利用该网络进行数据传输。因此,需要对IP视频电话分别进行声音和图像的测试。在进行声音测试时,需要得到声音的质量、带宽和滞后时间等相关参数,从而判断声音传递的效果。随后对视频图像进行测试,获取图像的质量、带宽及传递滞后情况。
通过音频和视频的测试,可得到IP视频电话的测试结果,从而判断IP视频电话功能是否符合要求。
4.1 测试结果
在数据传递网络中,对上述过程中的数据进行整理分析,结果如表1所示。


根据上述步骤,对整个系统进行测试,得到结果如表2所示。


4.2 系统缺陷以及处理方式
军用车辆通信系统中的IP视频电话需要在软、硬件同时符合系统要求时才能正常使用。在系统测试时,存在的问题可能是因软、硬件或者应用程序等问题所导致的,其处理方式如下:
(1)用户无法正常进行网络连接,不能进行数据传递。处理方式:检查用户之间的硬件是否连接,假设已正常连接,则需要检查IP地址配置是否错误。假设硬件连接和应用系统均无任何时候问题,则需要检查软件设计是否符合通信要求。
(2)视频无法正常显示。处理方式:假设视频无法正常显示,则需要检查视频功能的设置以及图像采集设备是否正确连接,然后利用图像采集设备测试程序本身配置是否存在问题,最终检查网络数据传递是否正常。
(3)音频无法正常传递。处理方式:检查音频传输功能的设置是否存正常以及网络连接、声卡硬件和驱动是否正常。
cat/dev/dsp>xyz
cat xyz>/dev/dsp
用第一条命令能够将传递信息保存在xyz文件中,从而实现录音功能。使用第二条命令可播放音频,从而进行音频检测。
(4)音频传输与视频传输无法同步进行。处理方式:检测网络连接是否正常,带宽是否足够使用,发送和接收的线程能否正确对音频和视频进行同步数据传递。

5 结束语
文中提出了一种新的防冲突大型移动通信设备的设计与实现方法。以嵌入式为基础,设计出抗干扰能力较强的系统硬件,通过合理的编写相关的驱动软件,完成优质高效的软件设计,确保系统的高效工作。后期的实验显示,设计的硬件与软件能够较好的兼容,并能够高效地完成通信工作,各功能实现效果良好。
返回列表