首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 基于神经网络技术的虚拟传感器温度补偿系统
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
基于神经网络技术的虚拟传感器温度补偿系统
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-2-27 22:00
|
只看该作者
基于神经网络技术的虚拟传感器温度补偿系统
网络技术
,
工作环境
,
传感器
,
半导体
,
灵敏度
介绍了一体化虚拟温度传感器补偿仪,运用多传感器数据融合技术与神经网络技术,与虚拟仪器技术相结合创建了虚拟压阻式传感器的温度补偿系统。实验结果表明,该方法有效地抑制干扰因素,获得高稳定性测量结果。
0 引言
固态压阻式传感器是利用半导体的压阻效应所制成的传感器,其灵敏度将随温度的变化而变化,导致输入输出特性存在非线性。表现为被测的目标参量为零或保持恒定值时,改变工作环境温度,则传感器的零点或输出电压值均发生变化,这将给测量目标参量带来误差。传统的温度补偿方法有:恒流源供电法、电压正反馈补偿法、热敏电阻补偿法,但以上三种方法只能是灵敏度温度系数接近于零,很难在较宽的温度范围内得到完全补偿。因此,本文将人工神经网络和虚拟仪器相结合,设计了压阻式压力传感器的温度补偿系统,消除了温度影响同时也进行了零点及非线性补偿。
1 补偿系统的工作原理
补偿系统由传感器和温度补偿器两部分组成。传感器部分包括主传感器与温度监测传感器:主传感器为固态压阻式传感器,它与数据采集卡(DAQ)组成测试系统;对主传感器进行温度补偿要引入温度监测传感器,它起到监测工作环境温度的作用;温度补偿器是一个软件模块,补偿系统要对上述2个传感器进行数据融合,因此温度补偿软件模块也是一个多传感器数据融合系统。
1.1 BP神经网络的学习算法
对压阻式压力传感器进行温度补偿,可以在一定的工作温度范围内选定。表1列出了在20℃~65℃间6个温度状态的静态标定数据,同时在选用的压阻式压力传感器量程范围内选了5个标定值,因此获得了30个标定数据。其中,20个数据对网络进行训练,10个数据作为网络校验样本数据。
从表1的标定值可以看出,在输入压力值不变的情况下,工作环境温度改变,压力传感器的输出电压值也随之改变。
1.2 样本数据归一化处理
神经网络所处理的数据应是在-1和+1间的归一化数据,因此采用如下公式进行传感器输出数据的归一化处理:
式中,
为第m个样本神经网络的输入、输出归一化值;Xim和Om为第m个样本的输入输出标定值,本文中i=1,2;Ximax和Ximin为第i个传感器输出最大、最小标定值。
1.3 神经网络的结构与训练
BP神经网络结构:
基于该系统采用3层BP神经网络,输入层i=1,2,共有2个节点,分别输入压阻传感器和温度传感器的输出电压值Up和Ut。隐层节点数j=1,2,…,l可在3~30范围内选择,视补偿效果而定。输出层节点k=1,为一个节点,表示输出压力值Pt。
温度补偿系统BP神经网络Ot和分别为归一化的网络输出的计算值与标定值;m为样本序号;M为样本总数;训练的样本数越多,网络的计算结果Ot的偏差越小。根据标定实验提供的学习样本,采用BP算法学习修正网络的权值和阈值,直到满足精度要求为止。训练后的神经网络仍不能使用,必须使用附加样本进行性能验证,如不能满足要求,就需要重新训练网络,所以神经网络的训练是一个反复的过程。
1.4 学习算法的图形化编程
在LabVIEW中要实现神经网络,可通过多种方式实现:利用CIN节点调用外部编译好的C或者C++程序;利用MATLAB Script节点编辑或调用MATLAB程序;利用LabVIEW本身的图形编程语言编程实现。
同上述两种方法相比,用LabVIEW本身的图形语言来编程有很多的优势。LabVIEW的G程序是独立于运行平台的,不需要依赖其他软件。而且作为一种图形化的、数据驱动的程序语言,LabVIEW可以更方便地实现给定的算法,程序更加清晰明了,修改起来也更加方便。同时利用子程序技术,可以大大提高程序的利用率。基于此,本文采用图形编程的方法来实现神经网络控制。图3为实现BP算法的LabVIEW程序。
2 系统设计与实现
系统使用NI公司的LabVIEW和PCI-MIO-16E-1多功能数据采集卡实现温度补偿系统。在LabVIEW平台下开发出“虚拟传感器参数检测仪”,完成数据的采集与预处理。在此基础上嵌入MATLAB程序进行神经网络运算。
2.1 面板设计
前面板主要由两部分组成:神经网络训练模块和数据保存模块。神经网络训练模块执行压阻传感器的温度补偿;数据保存模块将训练后的相关数据进行保存并写入文件中。
2.2 程序流程图设计
在LabVIEW中,流程图是程序运行的基础。流程图主要完成前面板上各个部分的相应功能,包括执行MATLABScript操作和While Loop操作。
2.3 数据运行及保存
当程序开始运行,分别在“压阻传感器输出”和“温度传感器输出”中输入25.42和27.01,然后单击“开始”按钮,则在“压力”数据框中显示出0。通过实验可以看出:虚拟温度补偿仪的补偿效果非常好。
3 结论
研究表明:将经典传感器经信号调理单元与微计算机赋予智能的结合,建立智能传感器系统是改善经典传感器性能的有效途径。本文运用LabVIEW图形化编程语言实现了BP神经网络控制。通过仿真实例验证,该方法快速有效,而且编程简单清晰。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议