首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
FPGA/CPLD可编程逻辑
» 图像自适应分段线性拉伸算法的FPGA设计
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
图像自适应分段线性拉伸算法的FPGA设计
发短消息
加为好友
pengpengpang
(pengpengpang)
当前离线
UID
1023229
帖子
6106
精华
0
积分
3055
阅读权限
90
来自
中国
在线时间
156 小时
注册时间
2013-12-20
最后登录
2016-7-3
论坛元老
UID
1023229
来自
中国
1
#
打印
字体大小:
t
T
pengpengpang
发表于 2014-3-31 23:45
|
只看该作者
图像自适应分段线性拉伸算法的FPGA设计
对比度
,
信噪比
,
空间
由于红外图像的成像机理以及红外成像自身的原因,红外图像有对比度低、图像较模糊、噪声大等特点。因此抑止噪声,提高图像信噪比,以及调整红外图像对比度,以利于后续图像分析、目标识别或跟踪,必须对红外图像进行增强处理。另外,在其他场合,若采用人机交互方式,则必须对原始图像进行预处理,改善图像视觉效果,使其更适合人机进一步的分析和处理。
图像增强从作用域出发,分为空间域增强和频率域增强两种。频率域是一种间接增强的方法,由于存在域之间的变换和反变换,计算复杂,难以满足实时性要求。自适应分段线性拉伸算法是一种空间域图像增强方法,直接对图像像素灰度进行操作,由于运算过程简单、实现方便,目前的图像增强预处理电路大多选用这种算法。硬件实现上,最初是采用单片DSP芯片实现,其原理为:图像数据实时的传输给DSP,DSP接收完1块数据后,再对整块数据进行增强处理,这样势必会造成时间的延迟,不能满足精确制导武器系统实时性的要求。
后来硬件结构发展为采取DSP,FPGA芯片相结合的方式。这样,有效结合了DSP的运算能力强与FPGA逻辑和存储资源丰富的优点;不足之处在于,DSP与FPGA之间的通信给设计工作增加了额外负担。与DSP相比,FPGA结构上的优势使得其更适合完成并行处理、及结构性强和高速的运算。本文基于这种算法理论基础,使用xilinx公司规模较大的XC4VLXl5系列FPGA,实现了红外图像的实时处理。
1 自适应线性分段线性灰度级拉伸算法
图像灰度线性拉伸算法表达式为:
式中:i是图像数据行号;j是图像数据列号;Y(i,J)是拉伸后输出图像灰度值;X(i,j)是输入原始图像灰度值,为14 b二进制数;Xmin是输入图像数据的最小灰度值;Xmax是输入图像数据的最大灰度值;Zmax表明输出图像的最大灰度值,设计中拉伸后的图像灰度值用8 b二进制数表示,故Zmax=255。
首先对红外图像做灰度直方图统计,低信噪比条件下,选取压缩因子为5%,将盲元和噪声的影响降到最低。分别搜索5%最大灰度值中的最小值作为Xmax,5%最小灰度值里的最大值作为Xmin。拉伸转换时,将大于Xmax的像素灰度置为Zmax,小于Xmin的像素灰度置为O。此算法将线性拉伸区间自适应地分为[O,Xmin),[Xmin,Xmax]和(Xmax,255]三个部分。其中,[O,Xmin)和(Xmax,255]两个灰度区间的像素灰度分别被压缩为O和255。若图像中目标较小,且目标正好位于两个被压缩的区间内,就有可能被抑制。为避免这种情况发生,可视情况适当调整压缩因子5%的大小。
2 拉伸算法的FPGA实现
2.1 设计思路
根据以上算法分析,FPGA设计思路如下:在每帧图像帧正程,用双端口RAM进行直方图统计,记录每个像素灰度值出现的次数,帧逆程即可统计得到此帧图像的Xmin和Xmax。因为相邻两帧图像近似度高,可用前帧得到的Xmin和Xmax来处理下帧图像。在帧逆程时,调用除法器计算出
的值;在下帧正程时,只需计算Q·[X(i,j)-Xmin],然后将得到的结果除以64(左移6位),即对每个像素只需1次减法、1次乘法和移位就可完成拉伸运算。实现框图如图1所示,拉伸后数据的输出仅比输入延时62.5 ns,实现了对红外图像的实时处理。
2.2 硬件设计
通过以上设计思路的分析,设计主要包括灰度直方图统计、除法和拉伸运算3部分。下面进行详细介绍。
2.2.1 双端口RAM
XC4VLXl5芯片具有丰富的BlockRAM资源,用它构成双端口RAM,进行灰度直方图统计。像素的灰度值作为双端口RAM的地址,对应空间存储此灰度值在1帧图像里的频数。以320×256帧大小、灰度值为14 b的红外图像为例,在每个像素灰度值都相同的极限情况下,每个地址空间需要的存储的值为81 920,转换为二进制有17 b,故所需存储空间大小为17 b×214。对双端口RAM的操作分为三个阶段:
(1)在帧正程时,只需对A端口进行读/写操作。根据接收到的像素灰度值,先读出RAM中对应地址空间的储值,加“1”后回写入原来的地址空间,这样在每帧正程结束时,就统计完了每个灰度值出现的频数,即完成了灰度直方图统计。
(2)帧逆程时,要同时对A,B端口进行读操作。对于A端口,依次从高地址读取RAM中的数,将读取的数进行累加,当和大于帧像素个数的5%时,此时对应的地址值即为Xmax;类似地对B端口操作,从0地址开始读RAM,可找到Xmin。将得到的灰度值Xmin和Xmax存入寄存器,作为除法器和下一帧图像拉伸运算的输入。
(3)每帧最后将双端口RAM清零,为下一帧灰度直方图统计做准备。由于双端口RAM没有整体清零功能,设计中采用从“O”地址开始。依次往高地址写零的方式清零。
2.2.2 除法器
除法运算通过调用ISE IP Core Generator生成的15位定点除法器来实现,满足高精度要求,而不采用逼近法。一帧图像的拉伸只需调用一次除法器,提高了运算的效率。在帧逆程计算Q:=16 384/(Xmax-Xmin)的值,对于15位输入,除法器有18个时钟周期的延时,而这并不会影响图像处理的实时性。
2.2.3 控制时钟
在1个像素时钟周期内要完成读RAM、加法计算和回写RAM的操作,RAM的控制时钟至少必须是像素时钟的4倍。控制时钟的选取还要考虑帧逆程的时间长度,要在逆程里访问RAM查找到Xmin和Xmax,还要完成RAM清零操作。FPGA系统时钟为96 MHz,分频后产生48 MHz,为像素时钟8倍,用它作为双端口RAM和除法器的控制时钟,可满足要求。
2.2.4 拉伸运算
将式(1)进行简单变换,可以记为:
Q值在上帧结束前已经得到,根据式(2)拉伸运算得到简化,只需1次减法和乘法运算,得到积的小数点左移6位后,截取低8位就得到拉伸后的灰度值。需要注意的是,截取前要判定乘法是否溢出,如果溢出,结果置为最大灰度值255。
3 系统验证
采用飞机高空采集的地面红外图像作为验证模板,灰度拉伸前的原始图像如图2所示,整幅图像对比度低,细节极不明显。最大、最小灰度值按5%的比例选取,拉伸后的图像如图3所示,拉伸后可明显看出河流、道路、汽车等地物的轮廓,但图像中较亮和较暗的部分层次不清晰。若减小灰度值压缩比例为2%,图像的主要轮廓变化不明显,较亮和较暗的部分将会显现出一定层次,这表明被压缩的区间相对变小,按比例拉伸的图像范围扩大。分段线性拉伸的结果可好可坏,分段区间的选择是关键,选取时要考虑原始图像的质量。噪声和盲元数目较少时,被压缩的区间可适当调小。
该设计充分利用Virtex-4 FPGA的逻辑资源,实现了红外图像的自适应分段线性拉伸,对FPGA芯片资源占用情况如表1所示。整个设计完全在FPGA中实现,能最大限度地减少分立元件的使用。降低了系统的整体功耗,设计周期和开发成本也就能随之减少。算法完全采用流水线设计思路,处理后的数据相对输入延时小于一个像素时钟周期,最高系统时钟可达128 MHz。设计的性能和实时性满足预期目标,可用于精确制导武器或导航系统。
4 结语
这里简要分析了图像自适应分段线性拉伸算法,利用Xilinx Virtex-4 FPGA丰富的片上资源实现了这一算法。通过实验对设计的有效性进行了验证,图像对比度有明显提高,噪声和盲元被抑制。但该算法具有局限性,仅适用于大目标的图像增强。在天文学、计算机视觉、动态景物分析、超声及声纳图像处理等领域中广泛存在着点目标红外图像,由于点目标无形状、尺寸等可利用的信息,处理时须存储多帧图像,数据处理量大。在做图像灰度级拉伸时,目标有可能被作为噪声而抑制掉,从而丢失有用信息,今后需要对点目标红外图像的增强方法做进一步研究。
收藏
分享
评分
记录学习中的点点滴滴,让每一天过的更加有意义!
回复
引用
订阅
TOP
返回列表
嵌入式技术
测试测量
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议