首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
综合设计
»
存储器
» 赛普拉斯技术专家支招:怎样为网络应用选择正确的同步SRAM存储器?
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
赛普拉斯技术专家支招:怎样为网络应用选择正确的同步SRAM存储器?
发短消息
加为好友
forsuccess
当前离线
UID
871057
帖子
6281
精华
0
积分
3141
阅读权限
90
在线时间
282 小时
注册时间
2012-2-21
最后登录
2015-6-23
论坛元老
UID
871057
性别
男
1
#
打印
字体大小:
t
T
forsuccess
发表于 2014-8-14 22:49
|
只看该作者
赛普拉斯技术专家支招:怎样为网络应用选择正确的同步SRAM存储器?
半导体
,
网络应用
,
存储器
,
普拉斯
,
工程师
标签:
半导体
(864)
赛普拉斯
(70)
存储器
(267)
SRAM
(87)
作者:赛普拉斯半导体存储器产品部门 资深主任应用工程师Jayasree Nayar
对于网络应用来说,选择合适的同步SRAM是至关重要的,因为网络应用需要增加带宽来达到更好的系统性能。系统设计人员需要明白不同种同步SRAM技术的特色和优势,从而可以为他们的应用选择正确的同步SRAM存储器。
选择合适同步SRAM的重要因素包括:密度,反应时间,速度,读写比率,以及功耗。了解了这些因素如何影响性能,可靠性和价格,设计人员就可以为他们的应用选择最佳的同步SRAM。
同步SRAM有如下分类:
图1:同步SRAM种类
Std.Sync: 标准同步
FT: Flow Through
PL
ipelined
SCD: 单周期取消片选Single Cycle Deselect
DCD: 双周期取消片选Double Cycle Deselect
QDR: 四倍速Quad Data Rate
DDR: 双倍速Double Data Rate
标准同步SRAM
标准同步SRAM通常用于工业电子,仪器仪表,和军事应用。其经常用作数据缓存(临时存储),可以通过其高速、单倍速(SDR)接口随机存取。标准同步 Burst SRAM对于受控读写操作来说是很理想的。客户可以选择Flow-through 或Pipelined结构,线性和交叉存取burst模式,也就是SCD和DCD。
Flow-through SRAM:Flow-through器件在输入端有一个寄存器。在时钟上升沿,捕获器件的地址和控制。在读操作时,允许请求的数据流入器件输出端,因此在第一个周期会读出数据。在写操作时。地址,控制和数据在同一个时钟上升沿捕获。
Pipelined SRAMs: Pipelined 和flow-through SRAM的区别是,pipelined器件在输入和输出端都有一个寄存器。在读操作时,数据可以流入pipeline器件输出寄存器。在下一个时钟周期,数据锁存在器件输出端。这和flow-through器件有所区别,这是因为从pipelinedSRAM 出来的数据会比flow-through的晚一个周期。然而,pipeline器件可以工作在比flow-through器件更高的频率,因为访问会有几个周期的中断。pipeline器件的写操作和flow-through器件相同。
Pipelined SRAM包括单周期取消片选(SCD)和双周期取消片选(DCD)两种类型。这决定了在器件取消片选以后需要多长时间使数据总线进入三态。三态定义为传输线设为高阻状态。
●单周期取消片选(SCD):I/O总线在片选结束一个周期后进入三态。
●双周期取消片选(DCD):I/O总线在片选结束两个周期后进入三态。
总体来说,pipelined SRAM可以比flow-through SRAM工作在更高的频率上。
在反应时间很重要的应用中,flow-through器件更合适,如果速度更重要,那么pipeline器件更合适。
如果系统的读/写比率为1:1,那么标准同步的Flow-through 和Pipelined SRAM就都不合适了,NoBL SRAM更合适。
NOBL/ZBT SRAM
无总线延时(NoBL- No Bus Latency) SRAM在网络和通信系统和测试设备中很常见。和标准同步Burst SRAM极为类似,NoBL SRAM也有flow-through 和pipelined SDR(单倍速)结构。在burst模式下,设计人员可以选择线性和交叉burst模式
NoBL Burst SRAM特别针对避免读写操作切换时总线浪费而设计的。这种器件还有另外一个名字-零总线转向 (ZBT- Zero Bus Turnaround)。NoBL结构避免了读写之间的等待周期,从而使I/O总线利用率可以接近100%。在某些系统中,可以显著提高带宽。标准同步 SRAM和 NoBL SRAM都有公用I/O结构。标准同步SRAM在高速缓存或者读写可控应用中很有效。NoBL SRAM更适用于读写经常切换的情况下,因为它可以避免读写切换时的延时。
QDR SRAM
下面我们介绍一下QDR系列器件。这个系列包括QDR和QDRII。
QDR由QDR组织开发。这个组织制定了数据手册,封装,QDR性能标准,因此设计人员可以从不同的供应商购买。
QDR是指四倍速(Quad Data Rate),QDR组织定义了QDR SRAM产品,最初是为了网络和通讯市场设计的。QDR SRAM和NoBL SRAM类似,但结构上有很大增强,例如双倍速I/O,专门的读写端口可以避免总线争用。QDR还有 HSTL电平以及可编程输出阻抗设置。QDR有单独并独立的输入和输出,这就意味着用户可以同时进行读写操作。之所以叫四倍速是因为在任何周期,都可以两组数据读出两组数据读入QDR器件。
QDR SRAM用于网络应用,读写基本保持平衡,例如包缓存,静态列表,流量状态,日程安排。QDR SRAM最大的时钟频率是167MHz,1周期读延时,现有工业级标准165 BGA封装。
QDRII SRAM
QDRII SRAM 在操作上和QDR SRAM类似,但性能有所提升。QDRII SRAM包括两个源同步,自由运行回应时钟(CQ/CQ),可以很容易捕获数据。QDRII SRAM还支持1.5V HSTL接口。应用和QDR SRAM相同。然而,QDRII SRAM速度可以达到333MHz,1.5周期读延时,burst长度为2和4,现有工业级标准165 BGA封装。
DDR SRAM
QDR组织还定义了DDR SRAM,其类似于传统的同步Burst SRAM产品,但是有双倍速I/O.和传统同步Burst SRAM相同,他们应用于读操作比较多的应用中,例如,网络通信应用中的包查找,包分级。
DDRII SRAM
DDRII SRAM的操作类似于DDR SRAM,但是性能有所提升。DDRII SRAM包括两个源同步,自由运行回应时钟(CQ/CQ),可以很容易捕获数据。DDRII SRAM还支持1.5V HSTL接口。应用和DDR SRAM相同。DDRII SRAM速度可以达到333MHz,1.5周期读延时,burst长度为2和4,现有工业级标准165 BGA封装。
DDRII SIO SRAM
DDRII SIO SRAM类似于DDRII CIO SRAM,但是有两个独立的端口:读端口和写端口都可以访问存储器阵列。读端口有数据输出支持读操作,写端口有数据输入支持写操作。DDR II SIO SRAM完全避免了公用I/O设备数据“转向”的问题。DDR II SIO有独立的输入和输出总线,因此和QDRII很类似。唯一的区别是DDRII SIO每个周期只能处理一个操作。另外,由于某个时刻只有一个总线在用,因此总线利用率为50%。
QDRII+ SRAM
QDRII+SRAM操作上和QDRII SRAM类似,但提升了性能。在QDRII+器件中没有冗余数据输入时钟(C & /C),它有一个握手信号(QVLD)代替,这个握手信号当数据变为有效时会有指示,因此简化了数据捕获。设计人员还可选择可编程ODT (On Die Termination)的QDRII+产品。QDRII+SRAM最大速度为550MHz,2或2.5周期读延时,burst长度为2和4,现有工业级标准165 BGA封装。
DDRII+ SRAM
DDRII+SRAM操作上和DDRII SRAM类似,但提升了性能。在DDRII+器件中没有冗余数据输入时钟(C&/C),它有一个握手信号(QVLD)代替,这个握手信号当数据变为有效时会有指示,因此简化了数据捕获。设计人员还可选择可编程ODT (On Die Termination)的DDRII+产品。ODT特性在写周期时开启,在读周期时关闭,从而可以节省功耗。DDRII+SRAM最大速度为 550MHz,2或2.5周期读延时,burst长度为2和4,现有工业级标准165 BGA封装。
DDRII+ SIO SRAM
DDRII+ SIO SRAM类似于DDRII+ CIO SRAM,但是有两个独立的端口:读端口和写端口都可以访问存储器阵列。读端口有数据输出支持读操作,写端口有数据输入支持写操作。DDR II+ SIO SRAM完全避免了公用I/O设备数据“转向”的问题。
QDR和QDRII/QDRII+ 可以使读写操作平衡的系统更优化:
●包存储
●链接表
●查找表
●统计表存储
●y
DDR 和DDRII/DDRII+ 专门应用于数据流操作或读/写不平衡的系统:
●2级缓存
微处理器,网络处理器,DSP存储器
DDRII/DDRII+ 分立I/O专门应用于1地址/时钟2-word burst的系统中。
再次强调一下,QDR 和QDRII/II+适用于读写平衡的系统,例如查找表和统计表存储。
如果需要高速缓存,DDR 和DDRII/II+更适合。
如果用户倾向于QDR结构,但地址总线不支持QDR接口,那么DDR分立IO将是最好选择。
存储器选择:关键因素
选择同步SRAM存储器的首要因素是数据带宽。表一列出了上述讨论过的不同种同步SRAM的带宽。为了计算方便,使用的是最大时钟频率和x36总线宽度。
表 1: 同步SRAM 带宽概览
另一个同步SRAM的选择因素是功耗。QDR/DDR器件的功率消耗比标准同步SRAM要低,因为供电电压低。决定存储器选择的其他因素如表2所示:
表2:存储器选择概览
注:QDRII+ 和DDRII+可以提供带活不带ODT (On-Die Termination)
现在有很多种同步SRAM。了解了存储器种类之间的不同,系统设计人员就可以为他们的应用选择恰当的同步存储器。
收藏
分享
评分
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议