首页
|
新闻
|
新品
|
文库
|
方案
|
视频
|
下载
|
商城
|
开发板
|
数据中心
|
座谈新版
|
培训
|
工具
|
博客
|
论坛
|
百科
|
GEC
|
活动
|
主题月
|
电子展
注册
登录
论坛
博客
搜索
帮助
导航
默认风格
uchome
discuz6
GreenM
»
测试测量
» 一种立体声信号相位差电平差测试仪的设计方法
返回列表
回复
发帖
发新话题
发布投票
发布悬赏
发布辩论
发布活动
发布视频
发布商品
一种立体声信号相位差电平差测试仪的设计方法
发短消息
加为好友
Bazinga
当前离线
UID
1023230
帖子
5213
精华
0
积分
2607
阅读权限
70
在线时间
158 小时
注册时间
2013-12-20
最后登录
2015-10-22
金牌会员
UID
1023230
1
#
打印
字体大小:
t
T
Bazinga
发表于 2014-9-16 09:46
|
只看该作者
一种立体声信号相位差电平差测试仪的设计方法
测试仪
,
立体声
,
相位差
本文主要提出了一种立体声信号相位差电平差测试仪的设计方法。用单片机为控制核心,主要由相位差检测模块、电平差检测模块、频谱分析及处理模块、电源模块、键盘和显示模块组成。
将LR立体声信号经频谱分析、整形及占空比检测电路进行处理,采用过零鉴相法,通过测矩形波占空比,实现相位差的测试。将LR信号用AD736专用芯片实现AC/DC转换,通过单片机编程,得到LR电平差。
在立体声播音或放音时,如果左右声道信号存在相位差和电平差,对播音或放音质量将会产生一定影响,出现声像漂移、音量减小、噪音增大和失真等故障现象。左右声道相位差电平差越大,音质也越差,严重时还会造成无音故障。
为此文中设计了立体声信号相位差电平差测试仪,只有准确测出相位差电平差,再用补偿电路进行修正,才能保证播音或放音质量,更好地满足人们欣赏到音质优美的广播或音乐的需要。
1设计方案
如图1所示,是立体声信号相位差电平差测试仪原理方框图。提出了一种立体声信号相位差电平差测试仪的设计方法。用C8051F020单片机为控制核心,主要由相位差检测模块、电平差检测模块、频谱分析及处理模块、电源模块、键盘和显示模块组成。将LR立体声信号经频谱分析、整形及占空比检测电路进行处理,采用过零鉴相法,通过测矩形波占空比,实现相位差的测试。将LR信号分别用AD736专用芯片实现AC/DC转换,通过单片机编程,得到LR电平差。整个系统用单片机控制,键盘操作,用LCD显示相位差电平差及相关信息。
图1 立体声信号相位差电平差测试仪原理方框图
2系统硬件设计
2.1相位差检测模块
2.1.1方框图和电路原理图
如图2所示,是相位差检测模块原理方框图。如图3所示,是相位差检测模块电路原理。
图2 相位差检测模块原理图
相位差检测模块由电压比较器、与门、放大器、占空比检测电路和仪器放大器组成。如图3所示,IC2 LM311和IC21LM311及其周围器件,构成2个电压比较器,L(A点信号)R(B点信号)左右声道信号分别经IC2、IC21电压比较器整形变为方波信号(C点信号和D点信号),然后再相与,得到矩形波(E点信号),74LS08是与门。IC4 AD827及其周围器件构成同相放大器,对与门输出的信号进行放大。IC5 CD4069及其周围器件构成占空比检测电路,用过零鉴相法,测量两个矩形波信号的占空比。输入端加入一个占空比为D的矩形波,输出端F点输出一个直流信号,数值在0~100 mV之间变化,这个直流信号既代表占空比D,是反映相位差的一个量。IC6 OPA2111及其周围器件组成仪器放大器,用于放大F点输出信号,因这个信号数值在0~100 mV,是小信号,所以采用自动较零型仪器放大器,以保证测试仪有很高的精度。当开关S1、S2同时打在“1”时,完成自动较零功能;当开关S1、S2同时打在“3”时,是正常的放大功能。放大后的信号,再加到单片机的A/D端,C8051F 020的内部设有12位A/D转换器。
图3 相位差检测模块电路原理图
2.1.2理论分析及实现
立体声信号是20Hz~20 kHz的音频信号,用uSL、uSR分别表示由音响设备输出的左右声道信号,其数学表达式为:
uSL(t)=USLsin(ωSLt+ψIL)(1)
uSR(t)=USRsin(ωSRt+ψIR)(2)
在式(1)和式(2)中,ψ是初相,ωt+ψ是相位。相位的表达式为:
φ(t)=ωt+ψ(3)
由式(3)可知,相位是时间t的线性函数。左右声道的φSL(t)和φSR(t)是2个简谐振荡的相位,则其相位差为:
φS(t)=φSL(t)-φSR(t)=(ωSL-ωSR)t+(ψSL-ψSR)=ψSt+(ψSL-ψSR)(4)
由式(4)可知,相位差也是时间t的线性函数。φ对ω偏导数是群延时,群延时tp为
由音响设备输出的左右声道信号“uSL、uSR,经过频谱分析及处理电路后,得到uL、uR信号,uL、uR是同频率的正弦信号,即ωL=ωR,则有:
φ(t)=φL(t)-φR(t)=(ωL-ωR)t+(ψL-ψR)=ψL-ψR(6)
由式(6)可知,uL、uR信号的相位差是一个常数,并由初相之差决定。如将L信号作为基准信号,L、R信号即uL、uR信号的表达式为:
uL(t)=ULsinωt(7)
uR(t)=URsin(ωt+ψ)(8)
这时,L、R信号相位差为:
φ=0-ψ=-ψ(9)
式(9)中的负号表示L滞后R一个ψ角度。所以只需要测量计算出相位差φ即可,或用△ψ表示LR信号的相位差。
如图4所示,是图4中A点、B点、C点、D点、E点的波形图。
图4 ABCDE各点的波形图
图4中,uA、uB是L信号和R信号,是正弦波;uC、uD是L、R信号经电压比较器整形后的方波,uE是2个方波相与后得到的矩形波,D是占空比。用过零鉴相法,测量两个矩形波信号的占空比。过零鉴相法是:两个正弦波,频率相同,让其经过鉴相网络后,变为方波。其前沿对应于正弦波的正向过零点,后沿对应于正弦波的负向过零点。再将两个方波送入到触发器的复位端和置位端,被测量方波的前沿将其复位,基准方波的前沿将触发器复位。触发器输出的脉冲宽度即是两个信号过零点的时间差,即图4中的占空比D.
再将uE放大后,送入占空比检测电路,在输出端F得到一个直流电压,数值是0~100 mV,这个直流信号即代表占空比D,是反映相位差的一个量,D从[(0~100%)×T]变化,其中T为A点(或B点)信号的周期。如F点输出信号为10 mV时,D=10%×T,则L(A点信号)和R(B点信号)的相位差△φ=180°-10%x360°。当D=0时,R、L信号的相位差为180°,即反相,这时立体声信号严重失真。
2.2电平差检测模块
图5所示为电平差检测电路原理图。因左右声道电平差检测电路图完全一样,所以图5是左声道电平差检测电路原理图。电平差检测电路由衰减器、交流直流变换电路和放大器三级组成,其中IC7 NE5532及其周围器件组成衰减器,将输入L信号电压的有效值衰减到200 mV.IC 8AD736及其周围器件组成交流变直流电路。IC9 NE5532及其周围器件组成放大器,将信号放大后送入单片机的A/D端。为了提高精度和减小误差,前级衰减器和后级放大器设计成自动校零型电路。
图5 电平差检测电路原理图
AD736是专用的单片精密真有效值A/D转换器,内部经过激光修正,具有频率特性好、速度快、灵敏度高、输入阻抗高、输出阻抗低、电源范围宽、功耗小等特点,其测量误差小于±0.3%.C3是输入耦合电容,一般取5~25μF.C4是输出滤波电容,一般取5~15μF,其数值会影响到输出电压有效值的精度,在低频端更为重要。C5一般取30~40μF,其数值大小会影响到被测电压的波峰因数Kp,Kp是被测电压的峰值与真有效值之比。
3系统软件设计
用C8051F020单片机,采用C语言编程,由主程序和子程序两部分组成。主程序完成系统初始化、参数设置和各子程序的调用。子程序主要包括:工作模式选择模块、参数设置及计算模块、相位差计算模块、电平差计算模块、A/D模块、键盘扫描模块和显示模块等。如图6所示,是主程序流程图。
图6 主程序流程图
4试验数据及分析
如表1所示,是相位差电平差测试数据。
由表1的测试数据可知,相位差的绝对误差小于0.7°,电平差的绝对误差小于3 mV(当△Ui=10 mV),测试精度较高。
5结论
随着电子技术的迅速发展,人们的生活质量不断提高,同时对广播和音乐放音也提出了更高的要求。只有准确地测量出左右声道的相位差电平差,再用补偿电路进行修正,才能保证播音和放音质量,满足人们欣赏到音质优美的广播和音乐的需求。
试验数据表明该仪器实现了LR信号相位差电平差的测试,且具有较高的测试精度,并能存储和显示相关信息。本设计具有创新性和实用性,为高质量立体声广播和研发制造高质量音响设备奠定了基础。
收藏
分享
评分
the king of nerds
回复
引用
订阅
TOP
返回列表
电商论坛
Pine A64
资料下载
方案分享
FAQ
行业应用
消费电子
便携式设备
医疗电子
汽车电子
工业控制
热门技术
智能可穿戴
3D打印
智能家居
综合设计
示波器技术
存储器
电子制造
计算机和外设
软件开发
分立器件
传感器技术
无源元件
资料共享
PCB综合技术
综合技术交流
EDA
MCU 单片机技术
ST MCU
Freescale MCU
NXP MCU
新唐 MCU
MIPS
X86
ARM
PowerPC
DSP技术
嵌入式技术
FPGA/CPLD可编程逻辑
模拟电路
数字电路
富士通半导体FRAM 铁电存储器“免费样片”使用心得
电源与功率管理
LED技术
测试测量
通信技术
3G
无线技术
微波在线
综合交流区
职场驿站
活动专区
在线座谈交流区
紧缺人才培训课程交流区
意见和建议